NEUTROSOPHIC STRONGLY α-GENERALIZED SEMI CLOSED SETS

V. BANU PRIYA, S. CHANDRASEKAR1, AND M. SURESH

ABSTRACT. The purpose of this paper is to introduce and study the concepts of Neutrosophic strongly α-generalized semi-closed sets and Neutrosophic strongly α-generalized semi-open sets. Some of their properties are explored.

1. INTRODUCTION AND PRELIMINARIES

Definition 1.1. [4,5] Let X be a non empty set and Neutrosophic sets A and B in the form $A = \{ (x, \eta_A(x), \sigma_A(x), \nu_A(x)) \mid x \in X \}$, $B = \{ (x, \eta_B(x), \sigma_B(x), \nu_B(x)) \mid x \in X \}$ then

11 corresponding author

2020 Mathematics Subject Classification. 03E72.

Key words and phrases. Neutrosophic topology, Neutrosophic strongly α-generalized semi closed sets, Neutrosophic strongly α-generalized semi open sets.
Definition 1.2. \[9\] A Neutrosophic topology on a non empty set \(X\) is a family \(\tau_N\) of Neutrosophic subsets in \(X\) satisfying the following axioms:

1. \(0_N, 1_N \in \tau_N;\)
2. \(G_1 \cap G_2 \in \tau_N\) for any \(G_1, G_2 \in \tau_N;\)
3. \(\bigcup G_i \in \tau_N\) for any family \(\{G_i \mid i \in J\} \subseteq \tau_N;\)

the pair \((X, \tau_N)\) is called a Neutrosophic topological space. The elements in \(\tau_N\) are called as Neutrosophic open sets. The Neutrosophic set \(A\) is closed if and only if \(A^c\) is Neutrosophic open.

Definition 1.3. Let \((X, \tau_N)\) be Neutrosophic topological spaces. The Neutrosophic closure and Neutrosophic interior of \(A\) are defined by

1. \(N-cl(A) = \bigcap\{K \mid K\ is\ a\ Neutrosophic\ closed\ set\ in\ X\ and\ A \subseteq K\};\)
2. \(N-int(A) = \bigcup\{G \mid G\ is\ a\ Neutrosophic\ open\ set\ in\ X\ and\ G \subseteq A\}.\)

Definition 1.4. Let \((X, \tau_N)\) be a Neutrosophic topological space. The subset \(A\) is:

1. Neutrosophic regular closed set \[1\] (N-RCS in short) if \(A = N-cl(N-int(A)).\)
2. Neutrosophic \(\alpha\) closed set \[1\] (N-\(\alpha\)CS in short) if \(N-cl(N-int(N-cl((A)))) \subseteq (A).\)
3. Neutrosophic semi closed set \[6\] (N-SCS in short) if \(N-int(N-cl(A)) \subseteq A.\)
4. Neutrosophic pre closed set \[11\] (N-PCS in short) if \(N-cl(N-int(A)) \subseteq A.\)
5. Neutrosophic semipreclosed set \[8\] (N-SPCS in short) if \(N-int(N-cl(N-int(A)) \subseteq A.\)
6. Neutrosophic generalised closed set \[3\] (N-GCS in short) if \(N-cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a N-OS in \(X.\)
7. Neutrosophic generalised semi closed set \[10\] (N-GSCS in short) if \(N-scl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a N-OS in \(X.\)
8. Neutrosophic \(\alpha\) generalised closed set \[7\] (N-\(\alpha\)GCS in short) if \(N-\alpha cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a N-OS in \(X.\)
Proof. Theorem 2.1. Every $X \subseteq U$ whenever $A \subseteq U$ and U is a U.

2. Neutrosophic strongly-α-generalized semi closed sets

Definition 2.1. A NSA in (X, τ) is said to be a Neutrosophic strongly α-generalized semi-closed set (briefly $N\alpha GSCS$) $N\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a $NGSOS$ in (X, τ) and the family of all $N\alpha GSCS$ of a NTS (X, τ) is denoted by $N\alpha GSC(X)$.

Example 1. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{7}{10}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$. Then the $NSA = \langle x, (\frac{1}{10}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$ is a $N\alpha GSCS$ in (X, τ).

Theorem 2.1. Every NCS in (X, τ) is a $N\alpha GSCS$ but not conversely.

Proof. Assume that A is a NCS in (X, τ). Let us consider a $NSA \subseteq U$ where U is a $NGSOS$ in X. Since $N\alpha cl(A) \subseteq Ncl(A)$ and A is a NCS in X, $N\alpha cl(A) \subseteq Ncl(A) = A \subseteq U$ and U is $NGSOS$. That is $N\alpha cl(A) \subseteq U$. Therefore, A is $N\alpha GSCS$ in X.

Example 2. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{1}{5}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$. Then the $NSA = \langle x, (\frac{1}{10}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$ is $N\alpha GSCS$ but not a NCS in X.

Theorem 2.2. Every $N\alpha CS$ in (X, τ) is a $N\alpha GSCS$ in (X, τ) but not conversely.

Proof. Let A be a $N\alpha CS$ in X. Let us consider a $NSA \subseteq U$ is a $NGSOS$ in (X, τ). Since A is a $N\alpha CS$, $N\alpha cl(A) = A$. Hence $N\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $NGSOS$. Therefore, A is a $N\alpha GSCS$ in X.

Example 3. Let $X = \{a, b\}$. Let $\tau = \{0_N, V_1, V_2, 1_N\}$ be a NT on X, where $V_1 = \langle x, (\frac{2}{5}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$ and $V_2 = \langle x, (\frac{1}{10}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$. Consider $NSA = \langle x, (\frac{4}{5}, 1, \frac{1}{2}), (\frac{3}{5}, 1, \frac{2}{5}) \rangle$ which is $N\alpha GSCS$ but not $N\alpha CS$, since $Ncl(Nin(Ncl(A))) = 1_N \notin A$.

Theorem 2.3. Every $NRCS$ in (X, τ) is a $N\alpha GSCS$ in (X, τ) but not conversely.

Proof. Let A be a $NRCS$ in (X, τ). Since every $NRCS$ is a NCS, A is a NCS in X. Hence by Theorem 2.1, A is a $N\alpha GSCS$ in X. □
Example 4. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{5}{7}), (\frac{3}{5}, \frac{1}{2}, \frac{5}{7}) \rangle$. Consider ANS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ which is a $NsaGSCS$ but not $NRCS$ in X as $Ncl(Nint(A)) = 0_N \subseteq A$.

Theorem 2.4. Every $NsaGSCS$ in (X, τ) is a $N\alpha GSCS$ in (X, τ) but not conversely.

Proof. Assume that A is a $NsaGSCS$ in (X, τ). Let us consider $NS A \subseteq U^*$ where U^* is a $NSOS$ in X. Since every $NSOS$ is a $NGSOS$ and by hypothesis $N_{\alpha cl}(A) \subseteq U^*$, whenever $A \subseteq U^*$ and U^* is a $NGSOS$ in X. We have $N_{\alpha cl}(A) \subseteq U^*$, whenever $A \subseteq U^*$ and U^* is a $NSOS$ in X. Hence A is a $N\alpha GSCS$ in X.

Example 5. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{5}{7}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{5}{7}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ is a $N\alpha GSCS$ but not a $NsaGSCS$ in X.

Remark 2.1. A NP closedness is independent of $NsaGS$ closedness.

Example 6. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{5}{7}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{5}{7}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ is NPCS but not $NsaGSCS$.

Example 7. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ is $NsaGSCS$ but not a NPCS.

Remark 2.2. A NSP closedness is independent of $NsaGSCS$ closedness.

Example 8. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ is NSPCS but not $NsaGSCS$.

Example 9. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ is $NsaGSCS$ but not NSPCS.

Remark 2.3. A $N_{\gamma CS}$ in (X, τ) need not be a $NsaGSCS$.

Example 10. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \rangle$ is $N_{\gamma CS}$ but not $NsaGSCS$.
The relations between various types of Neutrosophic closed sets are given in the following diagram.

The reverse implications are not true in general.

Remark 2.4. The intersection of any two $N_{\alpha}GSCS$ is not a $N_{\alpha}GSCS$ in general as can be seen in the following example.

Example 11. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{1}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$. Then the NS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{1}{5}), (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$ and $B = \langle x, (\frac{9}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{2}{10}, \frac{1}{2}, \frac{1}{2}) \rangle$ are $N_{\alpha}GSCS$ in X. Now $A \cap B = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{1}{5}), (\frac{7}{10}, \frac{1}{2}, \frac{1}{2}) \rangle \subseteq U^* = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{3}{5}) \rangle$ and U^* is $NGSOS$ in X. But $N\alpha cl(A \cap B) = 1_N \not\subseteq U^*$. Therefore, $A \cap B$ is not a $N_{\alpha}GSCS$ in X.

Theorem 2.5. Let (X, τ) be a NTS. Then for every $A \in N_{\alpha}GSC(X)$ and for every NS B in X, $A \subseteq B \subseteq N\alpha cl(A)$ implies $B \in N_{\alpha}GSC(X)$.

Proof. Let $B \subseteq U^*$ where U^* is a $NGSOS$ in X. Since $A \subseteq B$, $A \subseteq U^*$. Since A is a $N_{\alpha}GSCS$ in X, $N\alpha cl(A) \subseteq U^*$. By hypothesis $B \subseteq N\alpha cl(A)$. This implies $N\alpha cl(B) \subseteq N\alpha cl(A) \subseteq U^*$. Therefore, $N\alpha cl(B) \subseteq U^*$. Hence B is a $N_{\alpha}GSCS$ in X. □

The independent relations between various types of Neutrosophic closed sets are given in the following diagram.
In this diagram, $A \not\leftrightarrow B$ denotes A and B are independent and $A \not\implies B$ denotes A need not be B.

Theorem 2.6. If A is a NGSOS and a $N\alpha GSCS$, then A is a $N\alpha CS$ in X.

Proof. Let A be a NGSOS in X. Since $A \subseteq A$, by hypothesis $N\alpha cl(A) \subseteq A$. But always $A \subseteq N\alpha cl(A)$. Therefore, $N\alpha cl(A) = A$. Hence A is a $N\alpha CS$ in X. \square

Theorem 2.7. Let (X, τ) be a NTS. Then A is a $N\alpha GSCS$ if and only if $A \bar{q} F$ implies $N\alpha cl(A) \bar{q} F$ for every NGSCS F of X.

Proof. Necessary Part: Let F be a NGSCS and $A \bar{q} F$. Then $A \subseteq \hat{F}$ where \hat{F} is a NGSOS in X. By assumption $N\alpha cl(A) \subseteq \hat{F}$. Hence $N\alpha cl(A) \bar{q} F$.

Sufficient Part: Let F be NGSCS in X such that $A \subseteq \hat{F}$. By hypothesis, $A \bar{q} F$ implies $N\alpha cl(A) \bar{q} F$. This implies $N\alpha cl(A) \subseteq \hat{F}$ whenever $A \subseteq \hat{F}$ and \hat{F} is a NGSOS in X. Hence A is a $N\alpha GSCS$ in X. \square

3. Neutrosophic strongly α-generalized semi-open sets

In this section we introduce Neutrosophic strongly α-generalized semi-open sets and study some of its properties.

Definition 3.1. A NS A is said to be Neutrosophic strongly α-generalized semi-open set (briefly $N\alpha GSO S$) in (X, τ) if the complement A^c is a $N\alpha GSCS$ in X. The family of all $N\alpha GSO S$ of a NTS (X, τ) is denoted by $N\alpha GSO(X)$.

Theorem 3.1. For any NTS (X, τ), every NOS is a $N\alpha GSO S$ but not conversely.
Proof. Let A be a NOS in X. Then A^c is a NCS in X. By Theorem 2.1, A^c is a $NsαGSCS$ in X. Hence A is a $NsαGSOS$ in X. □

Example 12. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{3}{5}) \rangle$. Consider the NS $A = \langle x, (\frac{9}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$. Since A^c is a $NsαGSCS$, A is a $NsαGSOS$ but not NOS in X.

Theorem 3.2. In any $NTS (X, \tau)$ every $NαOS$ is a $NsαGSOS$ but not conversely.

Proof. Let A be a $NαOS$ in X. Then A^c is a $NαCS$ in X. By Theorem 2.2, A^c is a $NsαGSCS$ in X. Hence A is a $NsαGSOS$ in X. □

Example 13. Let $X = \{a, b\}$. Let $\tau = \{0_N, V_1, V_2, 1_N\}$ be a NT on X, where $V_1 = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$ and $V_2 = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{1}{2}, \frac{1}{2}, \frac{7}{10}) \rangle$. Then the NS $A = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{5}{10}), (\frac{1}{10}, \frac{1}{2}, \frac{4}{5}) \rangle$ is a $NsαGSOS$ in X but not a $NαOS$ in X.

Theorem 3.3. In any $NTS (X, \tau)$, every $NROS$ is a $NsαGSOS$ but not conversely.

Proof. Let A be a $NROS$ in X. Then A^c is a $NRCS$ in X. By Theorem 2.3, A^c is a $NsαGSCS$ in X. Hence A is a $NsαGSOS$ in X. □

Example 14. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{2}{5}), (\frac{1}{5}, \frac{1}{2}, \frac{1}{5}) \rangle$. Then the NS $A = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$ is a $NsαGSOS$ in X but not a $NROS$ in X.

Theorem 3.4. In any $NTS (X, \tau)$, every $NsαGSOS$ is a $NαGSOS$ but not conversely.

Proof. Let A be a $NsαGSOS$ in X. Then A^c is a $NsαGSCS$ in X. By Theorem 2.4, A^c is a $NαGSOS$ in X. Hence A is a $NαGSOS$ in X. □

Example 15. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{2}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{1}{5}) \rangle$. Then the NS $A = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$ is a $NαGSOS$ in X but not a $NsαGSOS$ in X.

Remark 3.1. The union of any two $NsαGSOS$ is not a $NsαGSOS$ in general.

Example 16. Let $X = \{a, b\}$. Let $\tau = \{0_N, V_1, V_2, 1_N\}$ be a NT on X, where $V_1 = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{3}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$, $V_2 = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{2}{5}) \rangle$ are $NsαGSOS$ in X. Now $V_1 \cup V_2 = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{2}{5}) \rangle$ is not a $NsαGSOS$ in X.

Theorem 3.5. A NS A of a NTS (X, τ) is a $N_{sa}GSOS$ if and only if $F \subseteq a_{int}(A)$ whenever F is a NGSCS in X and $F \subseteq A$.

Proof. Necessary Part: Let A be a $N_{sa}GSOS$ in X. Let F be a NGSCS in X and $F \subseteq A$. Then \hat{F} is a NGSOS in X such that $A' \subseteq \hat{F}$. Since A' is a $N_{sa}GSCS$, we have $N_{acl}(A') \subseteq \hat{F}$. Hence $(N_{a}(A')) \subseteq \hat{F}$. Therefore, $F \subseteq N_{a}(A)$.

Sufficient Part: Let A be a NS in X and let $F \subseteq N_{a}(A)$ whenever F is a NGSCS in X and $F \subseteq A$. Then $A' \subseteq \hat{F}$ and \hat{F} is a NGSOS. By hypothesis, $(N_{a}(A')) \subseteq \hat{F}$, which implies $N_{acl}(A') \subseteq \hat{F}$. Therefore, A is a $N_{sa}GSCS$ in X. Hence A is a $N_{sa}GSOS$ in X. □

Theorem 3.6. If A is a $N_{sa}GSOS$ in (X, τ), then A is a NGSOS in (X, τ).

Proof. Let A be a $N_{sa}GSOS$ in X. This implies A is a $N_{a}GSOS$ in X. Since every $N_{a}GSOS$ is a NGSOS, A is a NGSOS in X. □

References

DEPARTMENT OF MATHEMATICS
RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
PUDUVOYAL, TIRUVALLUR, TAMIL NADU, INDIA
Email address: spriya.maths@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS
ARIGNAR ANNA GOVERNMENT ARTS COLLEGE
NAMAKKAL, TAMIL NADU, INDIA
Email address: chandrumat@gmail.com

DEPARTMENT OF MATHEMATICS
R.M.D. ENGINEERING COLLEGE
KAVARAIPETTAI, TIRUVALLUR, TAMIL NADU, INDIA
Email address: sureshmaths2209@gmail.com