BOUNDS ON AG TOPOLOGICAL INDICES OF SOME GRAPH OPERATIONS

TEENA LIZA JOHN, T. K. MATHEW VARKEY, B. S. SUNOJ, AND JOHN K. RAJAN

Abstract. The AG index of a connected graph G is $AG(G) = \sum_{uv \in E(G)} \frac{du + dv}{2 \sqrt{du \cdot dv}}$ where du and dv represent the degrees of the vertices of the edge uv. In this paper some bounds of AG index are presented.

1. Introduction

The topological indices are numerical values associated with molecular graphs. These graph invariants are called molecular descriptors. They play a vital role in chemical documentation, isomer discrimination, relationship analysis like QSAR and QSPR. In 1947, [7] Weiner used his topological index named as Weiner index to calculate the boiling point of paraffins. Then in 1972, [5] Gutman and Trinajstic defined the Zagreb indices which are popular. Thereafter many indices are defined namely [1] [4] Randic index, topological index etc. In 2016 [6] V.S. Shigehalli and Rachanna Kanavur introduced arithmetic-geometric indices.

Throughout this paper we consider only connected graphs without loops or multiple edges called simple connected graphs. For a graph G, $V(G)$ and $E(G)$ denote the set of all vertices and edges respectively. For a graph G the degree of a vertex v is the number of edges incident to v and is denoted by $d(v)$. The composition (also called Lexicographic product) of graphs G_1 and G_2 with disjoint vertex set $V(G_1)$ and $V(G_2)$ and edge sets $E(G_1)$ and $E(G_2)$ is the graph with

1 corresponding author

2020 Mathematics Subject Classification. 05C07, 05C76, 92E10.

Key words and phrases. AG Indices, Graph operations, topological indices.
vertex set $V(G_1) \times V(G_2)$ and (u_i, v_j) is adjacent with u_k or $u_i = u_k$ and v_j is adjacent with v_l.

The Cartesian product \cite{2} of $G_1 \times G_2$ of graphs G_1 and G_2 has the vertex set $V(G_1) \times V(G_2)$ and $(u_i, v_j), (u_k, v_l)$ is an edge of $G_1 \times G_2$ if $u_i = u_k$ and $(v_j, v_l) \in E(G_2)$ or $(u_i, u_k) \in E(G_1)$ and $v_j = v_l$.

In this paper bounds for the AG indices of Corona product, Cartesian product and Composition of graphs are derived.

Definition 1.1. Arithmetico-Geometrico topological index for a non-empty graph G is denoted by $AG(G)$ and is defined as $AG(G) = \sum_{uv \in E(G)} \frac{du + dv}{2\sqrt{du \cdot dv}}$, where du and dv represent the degrees of the vertices of the edge uv.

2. **AG Indices of Graph Operations**

Definition 2.1. The eccentricity $e_e G(v)$ of a vertex v in a connected graph G is the greatest geodesic distance between v and any other vertex. The diameter $D(G)$ of G is defined as $d(G) = \max \{e_e G(v)|v \in V(G)\}$. Also the radius $\text{rad}(G)$ is defined as the $d(G) = \min \{e_e G(v)|v \in V(G)\}$.

Definition 2.2. The Cartesian product $G_1 \times G_2$ of G_1 and G_2 is a graph with vertex set $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and $(u_i, v_j), (u_k, v_l)$ are adjacent in $G_1 \times G_2$ if $u_i = u_k$ and $v_j, v_l \in E(G_2)$ or $u_i, u_k \in E(G_1)$ and $v_j = v_l$.

It can be seen that $|E(G_1 \times G_2)| = |E(G_1)||V(G_2)| + |E(G_2)||V(G_1)|$ and

$$d_{G_1 \times G_2}(u, v) = d_{G_1}(u) + d_{G_2}(v).$$

Theorem 2.1. Let G_1 and G_2 be two graphs with orders n_1 and n_2 and size m_1 and m_2 respectively. Then

$$AG(G_1 \times G_2) \leq \frac{\Delta_1 + \Delta_2}{\delta_1 + \delta_2} (m_2 n_1 + m_1 n_2),$$

where δ_1 and δ_2 are the minimum degrees of the vertices of G_1 and G_2 and Δ_1 and Δ_2 are their maximum degrees.
Proof.

\[AG(G_1 \times G_2) = \]

\[\sum_{(u,v_j) \in E(G_1 \times G_2), (u,v_i) \not\sim (u_k,v_i)} \frac{d_{G_1 \times G_2}(u_i,v_j) + d_{G_1 \times G_2}(u_k,v_i)}{2 \sqrt{d_{G_1 \times G_2}(u_i,v_j) \cdot d_{G_1 \times G_2}(u_k,v_i)}} \]

\[+ \sum_{(u,v_j),(u_k,v_i) \in E(G_1 \times G_2), (v_j,v_i) \not\in E(G_2)} \frac{d_{G_1 \times G_2}(u_i,v_j) + d_{G_1 \times G_2}(u_i,v_i)}{2 \sqrt{d_{G_1 \times G_2}(u_i,v_j) \cdot d_{G_1 \times G_2}(u_i,v_i)}} \]

\[+ \sum_{(u,v_j),(u_k,v_i) \in E(G_1 \times G_2), (u_i,u_k) \not\in E(G_1)} \frac{d_{G_1 \times G_2}(u_i,v_j) + d_{G_1 \times G_2}(u_k,v_j)}{2 \sqrt{d_{G_1 \times G_2}(u_i,v_j) \cdot d_{G_1 \times G_2}(u_k,v_j)}} \]

\[= \sum_{(u,v_j),(u_i,v_i) \in E(G_1 \times G_2), (v_j,v_i) \in E(G_2)} \frac{d_{G_1}(u_i) + d_{G_2}(v_j) + d_{G_1}(u_i) + d_{G_2}(v_j)}{2 \sqrt{(d_{G_1}(u_i) + d_{G_2}(v_j))(d_{G_1}(u_i) + d_{G_2}(v_j))}} \]

\[+ \sum_{(u,v_j),(u_i,v_i) \in E(G_1 \times G_2), (v_j,v_i) \in E(G_2)} \frac{2d_{G_1}(u_i) + d_{G_2}(v_j) + d_{G_2}(v_j)}{2 \sqrt{(d_{G_1}(u_i) + d_{G_2}(v_j))(d_{G_1}(u_i) + d_{G_2}(v_j))}} \]

\[+ \sum_{(u,v_j),(u_i,v_i) \in E(G_1 \times G_2)} \frac{d_{G_1}(u_i) + d_{G_1}(u_k) + 2d_{G_2}(v_j)}{2 \sqrt{(d_{G_1}(u_i) + d_{G_2}(v_j))(d_{G_1}(u_k) + d_{G_2}(v_j))}} \]

(2.1)

Suppose \(\delta_1 \) and \(\delta_2 \) be minimum degrees of the vertices of \(G_1 \) and \(G_2 \) and \(\Delta_1 \) and \(\Delta_2 \) be their maximum degrees. Then \(\delta_1 \leq d_{G_1}(u_i) \leq \Delta_1 \) and \(\delta_2 \leq d_{G_1}(u_i) \leq \Delta_2 \). So,

\[AG(G_1 \times G_2) \leq \]

\[\sum_{(u,v_j),(u_i,v_i) \in E(G_1 \times G_2), (v_j,v_i) \in E(G_2)} \frac{2 \Delta_1 + 2 \Delta_2}{2 \sqrt{(\delta_1 + \delta_2)^2}} + \sum_{(u_i,v_j),(u_k,v_i) \in E(G_1 \times G_2), (u_i,u_k) \in E(G_1)} \frac{2 \Delta_1 + 2 \Delta_2}{2 \sqrt{(\delta_1 + \delta_2)^2}} \]

\[\leq \frac{\Delta_1 + \Delta_2}{\delta_1 + \delta_2} \sum_{(u,v_j),(u_i,v_i) \in E(G_1 \times G_2), (v_j,v_i) \in E(G_2)} 1 + \frac{\Delta_1 + \Delta_2}{\delta_1 + \delta_2} \sum_{(u_i,v_j),(u_k,v_i) \in E(G_1 \times G_2), (u_i,u_k) \in E(G_1)} 1 \]
From (2.1), we have

\[AG(G_1 \times G_2) = \frac{\Delta_1 + \Delta_2}{\delta_1 + \delta_2} |E(G_2)||V(G_1)| + \frac{\Delta_1 + \Delta_2}{\delta_1 + \delta_2} |E(G_1)||V(G_2)|. \]

Hence, \(AG(G_1 \times G_2) \leq \frac{\Delta_1 + \Delta_2}{\delta_1 + \delta_2} (m_2 n_1 + m_1 n_2). \)

\(\square \)

Theorem 2.2. Let \(G_1 \) and \(G_2 \) be two graphs with orders \(n_1 \) and \(n_2 \) and size \(m_1 \) and \(m_2 \) respectively. Then

\[AG(G_1 \times G_2) \leq (n_1 m_2 + n_2 m_1) \left(\frac{n_1 + n_2 - rad(G_1) - rad(G_2)}{\delta_1 + \delta_2} \right). \]

Proof. From (2.1), we have

\[AG(G_1 \times G_2) = \sum_{(u, v) \in E(G_1) \times E(G_2)} \frac{2d_{G_1}(u) + d_{G_2}(v)}{2\sqrt{(d_{G_1}(u) + d_{G_2}(v))(d_{G_1}(u) + d_{G_2}(v))}} + \sum_{(u, v) \in E(G_1) \times E(G_2)} \frac{d_{G_1}(u) + d_{G_2}(v)}{2\sqrt{(d_{G_1}(u) + d_{G_2}(v))(d_{G_1}(u) + d_{G_2}(v))}} = A_1 + A_2. \]

Now,

\[A_1 = \sum_{(u, v) \in E(G_1) \times E(G_2)} \frac{2d_{G_1}(u) + d_{G_2}(v)}{2\sqrt{(d_{G_1}(u) + d_{G_2}(v))(d_{G_1}(u) + d_{G_2}(v))}} \leq \sum_{(u, v) \in E(G_1) \times E(G_2)} \frac{2(n_1 - ecc_{G_1}(u)) + (n_2 - ecc_{G_2}(v))}{2\sqrt{(\delta_1 + \delta_2)^2}} \leq \sum_{(u, v) \in E(G_1) \times E(G_2)} \frac{2(n_1 - rad(G_1)) + (n_2 - rad(G_2))}{2(\delta_1 + \delta_2)}. \]
Similarly,

\[
A_2 = \sum_{(u, v_j), (u, v_k) \in E(G_1 \times G_2), (u, v_k) \in E(G_1)} \frac{d_{G_1}(u_i) + d_{G_1}(u_k) + 2d_{G_2}(v_j)}{2\sqrt{(d_{G_1}(u_i) + d_{G_2}(v_j))(d_{G_1}(u_k) + d_{G_2}(v_j))}}
\leq \sum_{(u, v_j), (u, v_k) \in E(G_1 \times G_2), (u, v_k) \in E(G_1)} \frac{(n_1 - \text{ecc}_{G_1}(u_i)) + (n_1 - \text{ecc}_{G_1}(u_k)) + 2(n_2 - \text{ecc}_{G_2}(v_j))}{2(\delta_1 + \delta_2)}
\leq \sum_{(u, v_j), (u, v_k) \in E(G_1 \times G_2), (u, v_k) \in E(G_1)} \frac{(n_1 - \text{rad}(G_1)) + (n_1 - \text{rad}(G_1)) + 2(n_2 - \text{rad}(G_2))}{2(\delta_1 + \delta_2)}
= n_2m_1 \left(\frac{n_1 + n_2 - \text{rad}(G_1) - \text{rad}(G_2)}{\delta_1 + \delta_2}\right).
\]

Hence the conclusion,

\[
A(G_1 \times G_2) \leq n_1m_2 \left(\frac{n_1 + n_2 - \text{rad}(G_1) - \text{rad}(G_2)}{\delta_1 + \delta_2}\right) + n_2m_1 \left(\frac{n_1 + n_2 - \text{rad}(G_1) - \text{rad}(G_2)}{\delta_1 + \delta_2}\right).
\]

\[\square\]

Definition 2.3. The Corona product \([3] G_1 \circ G_2\) and \(G_1\) and \(G_2\) is a graph obtained by taking \(|V(G_1)|\) copies of \(G_2\) and joining each vertex of the \(i^{th}\) copy with vertex \(v_i \in V(G_1)\). Then

\[|V(G_1 \circ G_2)| = |V(G_1)|(|1 + |V(G_2)|)|\]
\[|E(G_1 \circ G_2)| = |E(G_1)| + |V(G_1)||V(G_2)| + |E(G_2)|. \]

Also, for a vertex in \(V(G_1 \circ G_2) \),
\[
d_{G_1 \circ G_2}(u) = \begin{cases}
 d_{G_1}(u) + |V(G_2)| & ; u \in V(G_1) \\
 d_{G_2}(u) + 1 & ; u \in V(G_2)
\end{cases}
\]

Theorem 2.3. Let \(G_2(i = 1, 2, \ldots, |V(G_1)|) \) represent the \(i^{th} \) copy of \(G_2 \) attached to the \(i^{th} \) vertex of \(G_1 \) and \(\delta_i \) and \(\Delta_i \) are minimum and maximum degrees of the vertices of \(G_i \), \(i = 1, 2 \). Then for the corona product \(G_1 \circ G_2 \) of \(G_1 \) and \(G_2 \),
\[
AG(G_1 \circ G_2) \leq \frac{m_1(\Delta_1 + n_2)}{\delta_1 + n_2} + \frac{(\Delta_2 + 1)n_1m_2}{\delta_2 + 1} + \frac{\Delta_2 + \Delta_1 + n_1 + 1}{2\sqrt{(\delta_2 + 1)(\delta_1 + n_1)}}n_1m_2
\]

Proof. The edge sets of \(G_1 \circ G_2 \) can be partitioned into three sets,
\[
E_1 = \{ e = uv \in E(G_1 \circ G_2), e \in E(G_1) \},
\]
\[
E_2 = \{ e = uv \in E(G_1 \circ G_2), e \in E(G_2), i = 1, 2, \ldots, |V(G_1)| \},
\]
\[
E_3 = \{ e = uv \in E(G_1 \circ G_2), u \in V(G_2), i = 1, 2, \ldots, |V(G_1)| \text{and, } v \in V(G_1) \}.
\]

Now,
\[
AG(G_1 \circ G_2) = \sum_{uv \in E(G_1 \circ G_2)} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2\sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}}
\]
\[
= \sum_{uv \in E_1} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2\sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}} + \sum_{uv \in E_2} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2\sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}}
\]
\[
+ \sum_{uv \in E_3} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2\sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}}
\]
\[
= A_1 + A_2 + A_3.
\]
\[A_1 = \sum_{uv \in E_1} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2 \sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}} \]
\[= \sum_{uv \in E_1} \frac{d_{G_1}(u) + |V(G_2)| + d_{G_1}(v) + |V(G_2)|}{2 \sqrt{(d_{G_1}(u) + |V(G_2)|)(d_{G_1}(v) + |V(G_2)|)}} \]
\[= \sum_{uv \in E_1} \frac{d_{G_1}(u) + d_{G_1}(v) + 2n_2}{2 \sqrt{(d_{G_1}(u) + n_2)(d_{G_1}(v) + n_2)}} \]
\[\leq \sum_{uv \in E_1} \frac{\Delta_1 + \Delta_1 + 2n_2}{2 \sqrt{(\delta_1 + n_2)(\delta_1 + n_2)}} \]
\[\leq \sum_{uv \in E_1} \frac{\Delta_1 + n_2}{\delta_1 + n_2} \]
\[= \frac{\Delta_1 + n_2}{\delta_1 + n_2} \sum_{uv \in E_1} 1 = \frac{m_1(\Delta_1 + n_2)}{\delta_1 + n_2}. \]

Hence, \(A_1 \leq \frac{m_1(\Delta_1 + n_2)}{\delta_1 + n_2}. \)

\[A_2 = \sum_{uv \in E_2} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2 \sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}} \]
\[= \sum_{uv \in E_2} \frac{d_{G_2}(u) + 1 + d_{G_2}(v) + 1}{2 \sqrt{(d_{G_2}(u) + 1)(d_{G_2}(v) + 1)}} \]
\[\leq \sum_{uv \in E_2} \frac{\Delta_2 + 1 + \Delta_2 + 1}{2 \sqrt{(\delta_2 + 1)(\delta_2 + 1)}} \]
\[= \sum_{uv \in E_2} \frac{\Delta_2 + 1}{\delta_2 + 1} \]
\[= \frac{\Delta_2 + 1}{\delta_2 + 1} \sum_{uv \in E_2} 1 \]
\[= \frac{\Delta_2 + 1}{\delta_2 + 1} (|V(G_1)| |E(G_2)|) \]

Hence, \(A_2 \leq \frac{n_1 m_2 (\Delta_2 + 1)}{\delta_2 + 1}. \)
\[A_3 = \sum_{uv \in E_3} \frac{d_{G_1 \circ G_2}(u) + d_{G_1 \circ G_2}(v)}{2\sqrt{d_{G_1 \circ G_2}(u)d_{G_1 \circ G_2}(v)}} \]
\[= \sum_{uv \in E_3} \frac{d_{G_2}(u) + 1 + d_{G_1}(v) + |V(G_2)|}{2\sqrt{(d_{G_2}(u) + 1)(d_{G_1}(v) + |V(G_2)|)}} \]
\[\leq \sum_{uv \in E_3} \frac{\Delta_2 + 1 + \Delta_1 + n_2}{2\sqrt{(\delta_2 + 1)(\delta_1 + n_2)}} \sum_{uv \in E_3} 1 \]
\[= \frac{\Delta_2 + 1 + \Delta_1 + n_2}{2\sqrt{(\delta_2 + 1)(\delta_1 + n_2)}} |V(G_1)||V(G_2)| \]
i.e.,
\[A_3 \leq \frac{\Delta_2 + \Delta_1 + n_2 + 1}{2\sqrt{(\delta_2 + 1)(\delta_1 + n_2)}} n_1 n_2. \]

Hence we conclude:
\[AG(G_1 \circ G_2) \leq \frac{m_1(\Delta_1 + n_2)}{\delta_1 + n_2} + \frac{(\Delta_2 + 1)n_1 m_2}{\delta_2 + 1} + \frac{\Delta_2 + \Delta_1 + n_2 + 1}{2\sqrt{(\delta_2 + 1)(\delta_1 + n_2)}} n_1 n_2. \]

\[\square \]

Theorem 2.4. Let \(G_2, (i = 1, 2, \ldots, |V(G_1)|) \) represent the \(i \)th copy of \(G_2 \) attached to the \(i \)th vertex of \(G_1 \) and \(\delta_i \) and \(\Delta_i \) are minimum and maximum degrees of the vertices of \(G_i, i = 1, 2 \). Then for the corona product \(G_1 \circ G_2 \) of \(G_1 \) and \(G_2 \),
\[AG(G_1 \circ G_2) \geq \frac{(\delta_1 + n_2)m_1}{\Delta_1 + n_2} + \frac{(\delta_2 + 1)n_1 m_2}{\Delta_2 + 1} + \frac{\delta_2 + \delta_1 + n_1 + 1)n_1 n_2}{2\sqrt{(\Delta_2 + 1)(\Delta_1 + n_1)}} n_1 n_2. \]

Proof. We have from (2.2)
\[A_1 = \sum_{uv \in E_1} \frac{d_{G_1}(u) + |V(G_2)| + d_{G_1}(u) + |V(G_2)|}{2\sqrt{(d_{G_1}(u) + |V(G_2)|)(d_{G_1}(u) + |V(G_2)|)}} \]
\[\geq \sum_{uv \in E_1} \frac{\delta_1 + n_2 + \delta_1 + n_2}{2\sqrt{(\Delta_1 + n_2)(\Delta_1 + n_2)}} \]
\[= \frac{\delta_1 + n_2}{\Delta_1 + n_2} \sum_{uv \in E_1} 1 \geq \frac{m_1(\delta_1 + n_2)}{\Delta_1 + n_2}. \]
Again, from (2.3)

\[A_2 = \sum_{uv \in E_2} \frac{d_{G_2}(u) + 1 + d_{G_2}(v) + 1}{2\sqrt{(d_{G_2}(u) + 1)(d_{G_2}(v) + 1)}} \geq \sum_{uv \in E_2} \frac{\delta_2 + 1 + \delta_2 + 1}{2\sqrt{(\Delta_2 + 1)(\Delta_2 + 1)}} \]

\[= \frac{\delta_2 + 1}{\Delta_2 + 1} \sum_{uv \in E_2} \geq \frac{(\delta_2 + 1)n_1m_2}{\Delta_2 + 1}. \]

From (2.4)

\[A_3 = \sum_{uv \in E_3} \frac{d_{G_3}(u) + 1 + d_{G_3}(v) + |V(G_2)|}{2\sqrt{(d_{G_3}(u) + 1)(d_{G_3}(v) + |V(G_2)|)}} \geq \sum_{uv \in E_3} \frac{\delta_2 + 1 + \delta_1 + n_2}{2\sqrt{(\Delta_2 + 1)(\Delta_1 + n_2)}} \]

\[= \frac{\delta_2 + 1 + \delta_1 + n_1}{2\sqrt{(\Delta_2 + 1)(\Delta_1 + n_1)}} \sum_{uv \in E_3} 1 = \frac{n_1n_2(\delta_2 + 1 + \delta_1 + n_2)}{2\sqrt{(\Delta_2 + 1)(\Delta_1 + n_2)}}. \]

Hence,

\[AG(G_1 \circ G_2) \geq \frac{(\delta_1 + n_2)m_1}{\Delta_1 + n_2} + \frac{(\delta_2 + 1)n_1m_2}{\Delta_2 + 1} + \frac{(\delta_2 + \delta_1 + n_2 + 1)n_1n_2}{2\sqrt{(\Delta_2 + 1)(\Delta_1 + n_2)}}n_1n_2. \]

\[\square \]

Definition 2.4. The composition or lexicographic product \(G = G_1[G_2] \) of graphs \(G_1 \) and \(G_2 \) with disjoint vertex sets \(V(G_1) \) and \(V(G_2) \) and edge sets \(E(G_1) \) and \(E(G_2) \) is a graph with vertex set \(V(G_1) \times V(G_2) \) and \((u_i, v_j)\) is adjacent with \((u_k, v_i)\) whenever \(u_i \) is adjacent with \(u_k \) or \(u_i = u_k \) and \(v_j \) adjacent with \(v_i \).

By this definition, one can see that

\[|E(G_1[G_2])| = |E(G_1)||V(G_2)|^2 + |E(G_2)||V(G_1)| \]

\[d_{G_1[G_2]}(u, v) = |V(G_2)|d_{G_1}(u) + d_{G_2}(v). \]

Theorem 2.5. Let \(G_1 \) and \(G_2 \) be two connected graphs with order \(n_1 \) and \(n_2 \), size \(m_1 \) and \(m_2 \), \(\delta_1 \) and \(\Delta_1 \) are minimum and maximum degrees of the vertices \(G_i, i = 1, 2 \) respectively. Then \(AG(G_1[G_2]) \leq \frac{(n_2\Delta_1 + \Delta_2)(n_1m_2 + m_1n_2^2)}{n_2\delta_1 + \delta_2}. \)
Proof.

\[AG(G_1[G_2]) = \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), \{u, v\} \neq \{k, l\}} \frac{d_{G_1[G_2]}(u_i, v_j) + d_{G_1[G_2]}(u_k, v_l)}{2 \sqrt{d_{G_1[G_2]}(u_i, v_j) \cdot d_{G_1[G_2]}(u_k, v_l)}} \]

\[= \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), j \neq l} \frac{d_{G_1[G_2]}(u_i, v_j) + d_{G_1[G_2]}(u_k, v_l)}{2 \sqrt{d_{G_1[G_2]}(u_i, v_j) \cdot d_{G_1[G_2]}(u_k, v_l)}} \]

\[+ \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), i \neq k} \frac{d_{G_1[G_2]}(u_i, v_j) + d_{G_1[G_2]}(u_k, v_l)}{2 \sqrt{d_{G_1[G_2]}(u_i, v_j) \cdot d_{G_1[G_2]}(u_k, v_l)}} \]

\[= A_1 + A_2. \]

Consider

\[A_1 = \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), j \neq l} \frac{d_{G_1[G_2]}(u_i, v_j) + d_{G_1[G_2]}(u_k, v_l)}{2 \sqrt{d_{G_1[G_2]}(u_i, v_j) \cdot d_{G_1[G_2]}(u_k, v_l)}} \]

\[= \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), j \neq l} \frac{|V(G_2)| d_{G_1}(u_i) + d_{G_2}(v_j) + |V(G_2)| d_{G_1}(u_i) + d_{G_2}(v_l)}{2 \sqrt{(|V(G_2)| d_{G_1}(u_i) + d_{G_2}(v_j)) \cdot (|V(G_2)| d_{G_1}(u_i) + d_{G_2}(v_l))}} \]

\[\leq \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), j \neq l} \frac{2(n_2 \Delta_1 + \Delta_2)}{2 \sqrt{(n_2 \delta_1 + \delta_2)(n_2 \delta_1 + \delta_2)}} \]

\[\leq \frac{(n_2 \Delta_1 + \Delta_2)}{(n_2 \delta_1 + \delta_2)} \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), j \neq l} 1 \leq \frac{(n_2 \Delta_1 + \Delta_2)n_1 m_2}{(n_2 \delta_1 + \delta_2)}. \]

Now consider

\[A_2 = \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), i \neq k} \frac{d_{G_1[G_2]}(u_i, v_j) + d_{G_1[G_2]}(u_k, v_l)}{2 \sqrt{d_{G_1[G_2]}(u_i, v_j) \cdot d_{G_1[G_2]}(u_k, v_l)}} \]

\[= \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), i \neq k} \frac{|V(G_2)| d_{G_1}(u_i) + d_{G_2}(v_j) + |V(G_2)| d_{G_1}(u_k) + d_{G_2}(v_l)}{2 \sqrt{(|V(G_2)| d_{G_1}(u_i) + d_{G_2}(v_j)) \cdot (|V(G_2)| d_{G_1}(u_k) + d_{G_2}(v_l))}} \]

\[\leq \sum_{(u_i, v_j), (u_k, v_l) \in E(G_1[G_2]), j \neq l} \frac{2(n_2 \Delta_1 + \Delta_2)}{2 \sqrt{(n_2 \delta_1 + \delta_2)(n_2 \delta_1 + \delta_2)}} \]
\[\leq \frac{(n_2 \Delta_1 + \Delta_2)}{(n_2 \delta_1 + \delta_2)} \sum_{(u,v_j),(u_k,v_j) \in E(G_1[G_2])} 1 \]
\[= \frac{(n_2 \Delta_1 + \Delta_2)}{(n_2 \delta_1 + \delta_2)} \sum_{(u,v_j) \in E(G_1)} \sum_{v_j \in V(G_2)} \sum_{(u_k, v_j) \in E(G_2)} 1 \]
\[= \frac{(n_2 \Delta_1 + \Delta_2)m_1 n_2^2}{(n_2 \delta_1 + \delta_2)}. \]

Hence,
\[AG(G_1[G_2]) \leq \frac{(n_2 \Delta_1 + \Delta_2)n_1 m_2}{(n_2 \delta_1 + \delta_2)} + \frac{(n_2 \Delta_1 + \Delta_2)m_1 n_2^2}{(n_2 \delta_1 + \delta_2)} \]
\[= \frac{(n_2 \Delta_1 + \Delta_2)(n_1 m_2 + m_1 n_2^2)}{n_2 \delta_1 + \delta_2}. \]

\[\square \]

Theorem 2.6. Let \(G_1 \) and \(G_2 \) be two connected graphs with order \(n_1 \) and \(n_2 \), size \(m_1 \) and \(m_2, \delta, \) and \(\Delta, \) are minimum and maximum degrees of the vertices \(G_i, i = 1, 2, \) respectively. Then
\[AG(G_1[G_2]) \geq \frac{(n_2 \delta_1 + \delta_2)(n_1 m_2 + m_1 n_2^2)}{n_2 \Delta_1 + \Delta_2}. \]

Proof. Same as above. \(\square \)

References

DEPARTMENT OF MATHEMATICS
TKM COLLEGE OF ENGINEERING
KOLLAM, KERALA, INDIA
Email address: teenalizajohn@tkmce.ac.in

DEPARTMENT OF MATHEMATICS
TKM COLLEGE OF ENGINEERING
KOLLAM, KERALA, INDIA
Email address: mathewvarkeytk@gmail.com

DEPARTMENT OF MATHEMATICS
GOVT. POLYTECHNIC COLLEGE, ATTINGAL
THIRUVANANTHAPURAM, KERALA, INDIA
Email address: spalazhi@yahoo.com

DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE
THIRUVANANTHAPURAM, KERALA, INDIA
Email address: johnkrajan@yahoo.co.in