MBJW - FILTERS OF LATTICE WAJSBERG ALGEBRAS

T. ANITHA¹, V. AMARENDRABABU, AND G. BHANU VINOLIA

ABSTRACT. In this paper we define the MBJ^w – filters of Lattice wajsberg algebras and proved the properties of MBJ^w – filters. We derive some relation between fuzzy ideals, interval valued fuzzy ideals to neutrosophic ideals. Further we prove that cut sets of MBJ^w – sets formed MBJ^w – filter. Finally define the MBJ^w– lattice filters and proved every MBJ^w – filter is a MBJ^w – lattice filter and converse is not true.

1. INTRODUCTION

¹corresponding author

2020 Mathematics Subject Classification. 16P70, 16D25.

Key words and phrases. Lattice wajsberg algebra, MBJ-neutrosophic sets, MBJW – filters and MBJW– lattice filters.

In this paper we consider MBJ-neutrosophic sets \((M_J)_B\) defined by Y.B. Jun and introduce the concept \((M_J)_B\) filter of lattice wajsberg algebra and obtain some results on them. For further information of lattice wajsberg algebra refer the wajsberg algebra [5] by Front, Antonio and Torrens and for MBJ-neutrosophic sets refer the [10] MBJ-neutrosophic structures.

2. Preliminaries

Definition 2.1. [5] Let \((w, \rightarrow, ^{'}, 1_m)\) be a wajsberg algebra if it satisfies the following axioms for all \(x_m, y_m, z_m \in w\)

\[
\begin{align*}
(i) &
1_m \rightarrow x_m = x_m \\
(ii) & (x_m \rightarrow y_m) \rightarrow ((y_m \rightarrow z_m) \rightarrow (x_m \rightarrow z_m)) = 1_m \\
(iii) & (x_m \rightarrow y_m) \rightarrow y_m = (y_m \rightarrow x_m) \rightarrow x_m \\
(iv) & (x'_m \rightarrow y'_m) \rightarrow (y_m \rightarrow x_m) = 1_m
\end{align*}
\]

Definition 2.2. [5] The wajsberg algebra \(W\) is called a lattice wajsberg algebra with the bounds \(0_m, 1_m\) if it satisfies the following axioms for all \(x_m, y_m \in W\):

A partial ordering \(\leq\) on \(W\), such that \(x_m \leq y_m\) if and only if \(x_m \rightarrow x_m = 1_m\), \((x_m \vee y_m) = (x_m \rightarrow y_m) \rightarrow y_m\) and \((x_m \wedge y_m) = ((x'_m \rightarrow y'_m) \rightarrow y'_m)\).

Let \(I\) denote the family of all intervals numbers of \([0, 1]\). If \(I_1 = [a_1, b_1]\), \(I_2 = [a_2, b_2]\) are two elements of \(I[0,1]\), we call \(I_1 \geq^* I_2\) if \(a_1 \geq a_2\) and \(b_1 \geq b_2\). we define the term rmax to mean the maximum of two interval as \(\text{rmax } [I_1, I_2] = [\max(a_1, a_2), \max(b_1, b_2)]\). Similarly, me can define the term rmin of any two intervals.

Definition 2.3. [10] A neutrosophic set \((N^*)\), if the structure \(A_m = < y_m, w^A_T(y_m), w^A_I(y_m), w^A_F(y_m) >, y_m \in x\) where \(w^A_T\) is truth membership function, \((w^A_I)\) is an indeterminate membership function and \((w^A_F)\) is false membership function, on a nonempty set \(X\).
Definition 2.4. [10] A MBJ neutrosophic set \(A_m = \langle y_m, M_i^A(y_m), B_i^A(y_m), J_i^A(y_m) \rangle \) where \(M_i^A \) is truth membership function, \(B_i^A \) is an indeterminate interval -valued membership function and \(J_i^A \) is false membership function, on a nonempty set \(X \). The \(M_i^A \)-set is simply denoted by \(A_m = (M_i^A, B_i^A, J_i^A) \). Throughout this paper \(W \) denotes the lattice wajsberg algebra and \(M_i^A \)-set denotes the MBJ-neutrosophic set.

3. \(M_i^A \)-FILTERS

Definition 3.1. A \(M_i^A \)-set \(A_m = (M_i^A, B_i^A, J_i^A) \) on \(W \) is called a \(M_i^A \)-filter if it satisfies for all \(x_m, y_m \in W \),

1. \(M_i^A(1_m) \geq M_i^A(x_m), B_i^A(1_m) \geq B_i^A(x_m) \) and \(J_i^A(1_m) \leq J_i^A(x_m) \).
2. \(M_i^A(y_m) \geq \min \{ M_i^A(x_m \rightarrow y_m), M_i^A(x_m) \} \), \(B_i^A(y_m) \geq \min \{ B_i^A(x_m \rightarrow y_m), B_i^A(x_m) \} \) and \(F_i^A(y_m) \leq \max \{ J_i^A(x_m \rightarrow y_m), J_i^A(x_m) \} \).

Example 1. Let \(W = \{0_m, x_m, y_m, 1_m\} \) with the binary operation \(\rightarrow \) as follows: The \(M_i^A \)-set \(A_m = (M_i^A, B_i^A, J_i^A) \) defined on \(W \) as follows is \(M_i^A \)-filter of \(W \).

Table 1. W-Algebra

<table>
<thead>
<tr>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>col5</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>(0_m)</td>
<td>(x_m)</td>
<td>(y_m)</td>
<td>(1_m)</td>
</tr>
<tr>
<td>(0_m)</td>
<td>(1_m)</td>
<td>(1_m)</td>
<td>(1_m)</td>
<td></td>
</tr>
<tr>
<td>(x_m)</td>
<td>(y_m)</td>
<td>(1_m)</td>
<td>(1_m)</td>
<td></td>
</tr>
<tr>
<td>(y_m)</td>
<td>(x_m)</td>
<td>(1_m)</td>
<td>(1_m)</td>
<td></td>
</tr>
<tr>
<td>(1_m)</td>
<td>(0_m)</td>
<td>(x_m)</td>
<td>(y_m)</td>
<td>(1_m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_i^A)</td>
<td>(B_i^A)</td>
<td>(J_i^A)</td>
<td></td>
</tr>
<tr>
<td>(0_m)</td>
<td>.551</td>
<td>[.557, .7]</td>
<td>.451</td>
</tr>
<tr>
<td>(x_m)</td>
<td>.551</td>
<td>[.557, .7]</td>
<td>.41</td>
</tr>
<tr>
<td>(y_m)</td>
<td>.71</td>
<td>[.61, .72]</td>
<td>.231</td>
</tr>
<tr>
<td>(1_m)</td>
<td>.71</td>
<td>[.61, .72]</td>
<td>.231</td>
</tr>
</tbody>
</table>
Example 2. Let $W = \{0_m, x_m, y_m, z_m, v_m, 1_m\}$ with the binary operation \rightarrow as follows:

<table>
<thead>
<tr>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>col5</th>
<th>col6</th>
<th>col7</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow</td>
<td>0_m</td>
<td>x_m</td>
<td>y_m</td>
<td>z_m</td>
<td>v_m</td>
<td>1_m</td>
</tr>
<tr>
<td>0_m</td>
<td>1_m</td>
<td>1_m</td>
<td>1_m</td>
<td>1_m</td>
<td>1_m</td>
<td>1_m</td>
</tr>
<tr>
<td>x_m</td>
<td>z_m</td>
<td>1_m</td>
<td>y_m</td>
<td>z_m</td>
<td>y_m</td>
<td>1_m</td>
</tr>
<tr>
<td>y_m</td>
<td>v_m</td>
<td>x_m</td>
<td>1_m</td>
<td>y_m</td>
<td>x_m</td>
<td>1_m</td>
</tr>
<tr>
<td>z_m</td>
<td>x_m</td>
<td>x_m</td>
<td>1_m</td>
<td>1_m</td>
<td>1_m</td>
<td>1_m</td>
</tr>
<tr>
<td>v_m</td>
<td>y_m</td>
<td>1_m</td>
<td>1_m</td>
<td>y_m</td>
<td>1_m</td>
<td>1_m</td>
</tr>
<tr>
<td>1_m</td>
<td>0_m</td>
<td>x_m</td>
<td>y_m</td>
<td>x_m</td>
<td>y_m</td>
<td>1_m</td>
</tr>
</tbody>
</table>

The M_B^J set $A_m = (M_T^A, B_I^A, J_I^A)$ defined on W as follows is M_B^J-filter of W.

<table>
<thead>
<tr>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_T^A</td>
<td>B_I^A</td>
<td>J_I^A</td>
<td></td>
</tr>
<tr>
<td>0_m</td>
<td>$.451$</td>
<td>$[.5, .557]$</td>
<td>$.51$</td>
</tr>
<tr>
<td>x_m</td>
<td>$.671$</td>
<td>$[.6, .641]$</td>
<td>$.445$</td>
</tr>
<tr>
<td>y_m</td>
<td>$.451$</td>
<td>$[.5, .557]$</td>
<td>$.51$</td>
</tr>
<tr>
<td>z_m</td>
<td>$.451$</td>
<td>$[.5, .557]$</td>
<td>$.51$</td>
</tr>
<tr>
<td>v_m</td>
<td>$.451$</td>
<td>$[.5, .557]$</td>
<td>$.51$</td>
</tr>
<tr>
<td>1_m</td>
<td>$.671$</td>
<td>$[.6, .641]$</td>
<td>$.445$</td>
</tr>
</tbody>
</table>

Theorem 3.1. Let $A_m = (M_T^A, B_I^A, J_I^A)$ is M_B^J- set of W. If (M_T^A, J_I^A) is an intuitionistic fuzzy filter of W and $B_I^{A^+}$ and $B_I^{A^-}$ are fuzzy filters of W then $A_m = (M_T^A, B_I^A, J_I^A)$ is a M_B^J-filter of W.

Proof. For any $x_m, y_m \in W$, we have

$$B_I^A(1_m) = [B_I^{A^-}(1_m), B_I^{A^+}(1_m)] \geq^* [B_I^{A^-}(x_m), B_I^{A^+}(x_m)] = B_I^A(x_m)$$

and

$$B_I^A(y_m) = [B_I^{A^-}(y_m), B_I^{A^+}(y_m)] \geq^* [\min \{B_I^{A^-}(x_m \rightarrow y_m), B_I^{A^-}(x_m)\}, \min \{B_I^{A^+}(x_m \rightarrow y_m), B_I^{A^+}(x_m)\}]$$

$$= \min \{[B_I^{A^-}(x_m \rightarrow y_m), B_I^{A^+}(x_m \rightarrow y_m)], [B_I^{A^-}(x_m), B_I^{A^+}(x_m)]\}$$

$$= \min \{B_I^A(x_m \rightarrow y_m), B_I^A(x_m)\}.$$
Therefore \(A_m = (M^A_I, B^A_I, J^A_I) \) is a \(M^B_W \) - filter of \(W \). If \(A_m = (M^A_I, B^A_I, J^A_I) \) is a \(M^B_W \) - filter of \(W \), then for all \(x, y_m \in W \),

\[
[B^A_I^- (y_m), B^A_I^+ (y_m)] = B^A_I(y_m) \geq \ast \ rmin \{ B^A_I(x_m \rightarrow y_m), B^A_I(x_m) \}
\]

\[
= rmin \{ [B^A_I^-(x_m \rightarrow y_m), B^A_I^+(x_m \rightarrow y_m)], [B^A_I^-(x_m), B^A_I^+(x_m)] \}
\]

\[
= min \{ B^A_I^-(x_m \rightarrow y_m), B^A_I^-(x_m) \}, \ min \{ B^A_I^+(x_m \rightarrow y_m), B^A_I^+(x_m) \}
\]

It follows that

\[
B^A_I^-(y_m) \geq min \{ B^A_I^-(x_m \rightarrow y_m), B^A_I^-(x_m) \} \quad \text{and}
\]

\[
B^A_I^+(y_m) \geq min \{ B^A_I^+(x_m \rightarrow y_m), B^A_I^+(x_m) \}.
\]

Thus \(B^A_I^- \) and \(B^A_I^+ \) are fuzzy filters of \(W \). But \((M^A_I, J^A_I) \) is need not to be an intuitionistic fuzzy filter of \(W \).

For example the \(M^B_W \) - sets \(A_m = (M^B_I, B^A_I, J^B_I) \) and \(B_m = (M^B_I, B^B_I, J^B_I) \) in the example 3.3 are \(M^B_W \) - filters of \(W \) but \((M^A_I, J^B_I) \) is an intuitionistic fuzzy filter of \(W \) and \((M^B_I, J^B_I) \) is not an intuitionistic fuzzy filter of \(W \).

Theorem 3.2. If \(A_m = (M^A_I, B^A_I, J^A_I) \) is a \(M^B_W \) - filter of \(W \) then the sets

\[
(M^A_I, B^A_I^-, J^B_I)(M^A_I, B^A_I^+, J^B_I)
\]

are \(N^W \)- filters of \(W \).

Proof. Let \(A_m = (M^A_I, B^A_I, J^B_I) \) is a \(M^B_W \) - filter of \(W \). Then \(B^A_I(1_m) \geq \ast \ B(x_m) \) then clearly \(B^A_I^- (1_m) \geq B^A_I^- (x_m) \) and \(B^A_I^+ (1_m) \geq B^A_I^+ (x_m) \) for all \(x, y_m \in W \). And

\[
B^A_I^-(y_m) \geq \ast \ rmin \{ B^A_I^-(x_m \rightarrow y_m), B^A_I^-(x_m) \}
\]

that is

\[
B^A_I^-(y_m) \geq min \{ B^A_I^-(x_m \rightarrow y_m), B^A_I^-(x_m) \},
\]

\[
B^A_I^+(y_m) \geq min \{ B^A_I^+(x_m \rightarrow y_m), B^A_I^+(x_m) \}.
\]

\(B^A_I^- \) and \(B^A_I^+ \) satisfies the necessary conditions. So the sets \((M^A_I, B^A_I^-, J^B_I) \) and \((M^A_I, B^A_I^+, J^B_I) \) are \(N^W \)- filters of \(W \).

Theorem 3.3. Let \(A_m = (M^A_I, B^A_I, J^B_I) \) is \(M^B_W \) - filter of \(W \). If \(x \leq y_m \) then \(\{ M^I_I(x_m) \leq M^I_I(y_m), B^I_I(x_m) \leq B^I_I(y_m) \} \) for all \(x, y_m \in W \).

Proof. Since \(x \leq y_m \), then \(x \rightarrow y_m = 1 \). By \(A_m \) is \(M^B_W \) -filter of \(W \), We have

\[
M^I_I(y_m) \geq min \{ M^I_I(x_m \rightarrow y_m), M^I_I(x_m) \}
\]

\[
= min \{ M^I_I(1_m), M^I_I(x_m) \} = M^I_I(x_m),
\]

\[
B^I_I(y_m) \geq \ast \ rmin \{ B^I_I(x_m \rightarrow y_m), B^I_I(x_m) \}
\]

\[
= min \{ B^I_I(1_m), B^I_I(x_m) \} = B^I_I(x_m)
\]
and
\[J_F^A(y_m) \leq \max \{ J_F^A(x_m \to y_m), J_F^A(x_m) \} = \max \{ J_F^A(1_m), J_F^A(x_m) \} = J_F^A(x_m). \]

\[\square \]

Theorem 3.4. A M_B^w set $A_m = (M_T^A, B_I^A, J_F^A)$ is M_B^w-filter of W if and only if it holds (3.1) and for all $x_m, y_m, z_m \in W$,

\[M_T^A(x_m \to y_m) \geq \min \{ M_T^A(y_m \to (x_m \to z_m)), M_T^A(y_m) \}, \]

\[B_I^A(x_m \to z_m) \geq rmin \{ B_I^A(y_m \to (x_m \to z_m)), B_I^A(y_m) \} \]

and
\[J_F^A(x_m \to z_m) \leq \max \{ J_F^A(y_m \to (x_m \to z_m)), J_F^A(y_m) \}. \]

Proof. Let A_m be a M_B^w-filter of W such that it holds (3.1) and (3.3). Conversely, suppose that A_m is a M_B^w-set with (3.1) and (3.3). Taking $x_m = 1_m$ in (3.3), we get

\[M_T^A(1_m \to z_m) \geq \min \{ M_T^A(y_m \to (1_m \to z_m)), M_T^A(y_m) \}, \]

\[M_T^A(z_m) \geq \min \{ M_T^A(y_m \to z_m), M_T^A(y_m) \}, \]

\[B_I^A(1_m \to z_m) \geq rmin \{ B_I^A(y_m \to (1_m \to z_m)), B_I^A(y_m) \}, \]

\[B_I^A(z_m) \geq rmin \{ B_I^A(y_m \to z_m), B_I^A(y_m) \}, \]

\[J_F^A(1_m \to z_m) \leq \max \{ J_F^A(y_m \to (1_m \to z_m)), J_F^A(y_m) \}, \]

\[J_F^A(z_m) \leq \max \{ J_F^A(y_m \to z_m), J_F^A(y_m) \}. \]

Hence A_m is a M_B^w-filter of W. \[\square \]

Theorem 3.5. A M_B^w set $A_m = (M_T^A, B_I^A, J_F^A)$ is M_B^w-filter of W if and only if it holds (3.1) and

\[M_T^A((x_m \to (y_m \to z_m)) \to z_m) \geq \min \{ M_T^A(x_m), M_T^A(y_m) \}, \]

\[B_I^A((x_m \to (y_m \to z_m)) \to z_m) \geq rmin \{ B_I^A(x_m), B_I^A(y_m) \} \]

and
\[J_F^A((x_m \to (y_m \to z_m)) \to z_m) \leq \max \{ J_F^A(x_m), J_F^A(y_m) \}, \]

for all $x_m, y_m, z_m \in W$.

Proof. Suppose that A_m is a M_B^w-filter of W and $x_m, y_m, z_m \in W$. Clearly

\[M_T^A((x_m \to (y_m \to z_m)) \to z_m) \]

\[\geq \min \{ M_T^A((x_m \to (y_m \to z_m)) \to (y_m \to z_m)), M_T^A(y_m) \} \]

and
Theorem 3.6. Suppose
\((x_m \to (y_m \to z_m)) \to (y_m \to z_m) = (x_m(y_m \to z_m) \geq x_m)\).

So, \(M^A_I(((x_m \to (y_m \to z_m)) \to (y_m \to z_m)) \geq M^A_I(x_m)\).

From above we get,
\(M^A_I(((x_m \to (y_m \to z_m)) \to z_m) \geq \min \{M^A_I(x_m), M^A_I(y_m)\}\).

Clearly,
\(B^A_I((x_m \to (y_m \to z_m)) \to z_m) \geq \min \{B^A_I((x_m \to (y_m \to z_m)) \to (y_m \to z_m)), B^A_I(y_m)\}\)

and
\(B^A_I(((x_m \to (y_m \to z_m)) \to (y_m \to z_m)) \geq B^A_I(x_m)\).

From above we get,
\(B^A_I((x_m \to (y_m \to z_m)) \to z_m) \geq \star \min \{B^A_I(x_m), B^A_I(y_m)\}\).

Clearly,
\(J^A_F((x_m \to (y_m \to z_m)) \to z_m) \leq \min \{J^A_F((x_m \to (y_m \to z_m)) \to (y_m \to z_m)), J^A_I(y_m)\}\)

and
\(J^A_F(((x_m \to (y_m \to z_m)) \to z_m) \leq J^A_F(x_m)\).

From above we get,
\(J^A_F((x_m \to (y_m \to z_m)) \to z_m) \leq \max \{J^A_F(x_m), J^A_I(y_m)\}\).

Conversely suppose that \(A_m\) is a \(M^I_B\) -set with (3.1) and (3.4).
\(M^A_I(y_m) = M^A_I(1_m \to y_m) = M^A_I(((x_m \to y_m) \to (x_m \to y_m)) \to y_m)\)

\(\geq \min \{M^A_I(x_m \to y_m), M^A_I(x_m)\}\).

\(B^A_I(y_m) = B^A_I(1_m \to y_m) = B^A_I(((x_m \to y_m) \to (x_m \to y_m)) \to y_m)\)

\(\geq \star \min \{B^A_I(x_m \to y_m), B^A_I(x_m)\}\).

\(J^A_F(y_m) = J^A_F(1_m \to y_m) = J^A_F(((x_m \to y_m) \to (x_m \to y_m)) \to y_m)\)

\(\leq \max \{J^A_F(x_m \to y_m), J^A_I(x_m)\}\).

So, \(A_m\) is a \(M^I_B\) -filter of \(W\).

\(\square\)

Theorem 3.6. Every \(M^I_B\)-filter \(A_m = (M^A_I, B^A_I, J^A_F)\) fulfills the following result:
If \(x_m \to (y_m \to z_m) = 1_m\) then for all \(x_m, y_m, z_m \in W\),
\(M^A_I(z_m) \geq \min \{M^A_I(x_m), M^A_I(y_m)\}, B^A_I(z_m) \geq \star \min \{B^A_I(x_m), B^A_I(y_m)\}\)

and \(J^A_F(z_m) \leq \max \{J^A_F(x_m), J^A_I(x_m)\}\).

Proof. Suppose \(A_m\) is a \(M^I_B\) - filter of \(W\) and \(x_m \to (y_m \to z_m) = 1_m\) and \(x_m, y_m, z_m \in W\).

We get
\(M^A_I(z_m) \geq \min \{M^A_I(x_m \to z_m), M^A_I(y_m)\}\)
\[\geq \min \{ \min \{ M_T^A(x_m), M_T^A(x_m \rightarrow (y_m \rightarrow z_m)) \}, M_T^A(y_m) \} \]
\[\geq \min \{ \min \{ M_T^A(x_m), M_T^A(1_m) \}, M_T^A(y_m) \} \]
\[\geq \min \{ M_T^A(x_m), M_T^A(y_m) \} \]

\[B_I^A(z_m) \geq^{* \ rmin} \{ B_I^A(y_m \rightarrow z_m), B_I^A(y_m) \} \]
\[\geq^{* \ rmin} \{ \min \{ B_I^A(x_m), B_I^A(x_m \rightarrow (y_m \rightarrow z_m)) \} \} B_I^A(y_m) \]
\[\geq^{* \ rmin} \{ \min \{ B_I^A(x_m), B_I^A(1_m) \}, B_I^A(y_m) \} \]
\[\geq^{* \ rmin} \{ B_I^A(x_m), B_I^A(y_m) \} \]

and
\[J_F^A(z_m) \leq \max \{ J_F^A(y_m \rightarrow z_m), J_F^A(y_m) \} \]
\[\leq \max \{ \max \{ J_F^A(x_m), J_F^A(x_m \rightarrow (y_m \rightarrow z_m)) \}, J_F^A(y_m) \} \]
\[\leq \max \{ \max \{ J_F^A(x_m), J_F^A(1_m) \}, J_F^A(y_m) \} \]
\[\leq \max \{ J_F^A(x_m), J_F^A(y_m) \}. \]

Lemma 3.1. Every \(M_I^B \) set \(A_m = (M_I^A, B_I^A, J_F^A) \) of \(W \) fulfills the following result for all \(x((n_w), x(1_w), y_m \in W): \)

If \(x(n_w) \rightarrow (x(n-1)_w) \rightarrow \cdots \rightarrow (x(1)_w \rightarrow y_m) = 1_m \) then
\[M_I^A(y_m) \geq \min \{ M_I^A(x(n_w)), \cdots, M_I^A(x(1)_w) \}, \]
\[B_I^A(y_m) \geq^{* \ rmin} \{ B_I^A(x(n_w)), \cdots, B_I^A(x(1)_w) \}. \]

And \(J_F^A(y_m) \leq \max \{ J_F^A(x(n_w)), \cdots, J_F^A(x(1)_w) \}. \)

Theorem 3.7. Let \(A_m \) and \(B_m \) are two \(M_I^B \)-filters of \(W \), then \(A_m \cap B_m \) is also a \(M_I^B \)-filter of \(W \).

Proof. Let \(x_m, y_m, z_m \in W \) such that \(x_m \leq (y_m \rightarrow z_m) \), then \(x_m \rightarrow (y_m \rightarrow z_m) = 1_m \). Since \(A_m \) and \(B_m \) are two \(M_I^B \)-filters of \(W \), we have
\[M_I^A(z_m) \geq \min \{ M_I^A(x_m), M_I^A(y_m) \}, B_I^A(z_m) \geq^{* \ rmin} \{ B_I^A(x_m), B_I^A(y_m) \} \]

and
\[J_F^B(z_m) \leq \max \{ J_F^B(x_m), J_F^B(y_m) \}. \]
\[M_T^A \cap B(z_m) = \min \{ M_T^A(z_m), M_T^B(z_m) \} \]
\[= \min \{ \min \{ M_T^A(x_m), M_T^B(y_m) \}, \min \{ M_T^B(x_m), M_T^A(y_m) \} \} \]
\[= \min \{ \min \{ M_T^A(x_m), M_T^B(x_m) \}, \min \{ M_T^A(y_m), M_T^B(y_m) \} \} \]
\[= \min \{ M_T^A \cap B(x_m), M_T^A \cap B(y_m) \} \]
\[B^1_B A \cap B (z_m) = \min \left\{ B^A_B (z_m), B(z_m) \right\} \]
\[= \min \left\{ \min \left\{ B^A_B (x_m), B^A_B (y_m) \right\}, \min \left\{ B^B_B (x_m), B^B_B (y_m) \right\} \right\} \]
\[= \min \left\{ \min \left\{ B^A_B (x_m), B^B_B (x_m) \right\}, \min \left\{ B^A_B (y_m), B^B_B (y_m) \right\} \right\} \]
\[= \min \left\{ B^A_B (x_m \cap B), B^A_B (y_m \cap B) \right\}. \]
\[J^1_B A \cap B (z_m) = \max \left\{ J^A_B (z_m), J^B_B (z_m) \right\} \]
\[= \max \left\{ \max \left\{ J^A_B (x_m), J^A_B (y_m) \right\}, \max \left\{ J^B_B (x_m), J^B_B (y_m) \right\} \right\} \]
\[= \max \left\{ \max \left\{ J^A_B (x_m), J^B_B (x_m) \right\}, \max \left\{ J^A_B (y_m), J^B_B (y_m) \right\} \right\} \]
\[= \max \left\{ J^A_B (x_m \cap B), J^A_B (y_m \cap B) \right\}. \]

So \(A_m \cap B_m \) is a \(B^1_B \)-filter of W.

\[\square \]

Theorem 3.8. The \(\text{M}_B^1 \)-set \(A_m = (M^A_B, B^A_B, J^A_B) \) is \(\text{M}_B^1 \)-filter of W if and only if its nonempty \(\text{M}_B^1 \) cut sets \(M^A_B(A_0) \) and \(J^A_B(A_0) \) are implicative filters of W and \(B^A_B(A_0) \) is an intuitionistic fuzzy filter of W for all \(\alpha, \gamma \in [0, 1] \) and \([\beta_1, \beta_2] \in I \).

Proof. Suppose \(A_m \) is \(\text{M}_B^1 \)-filter of W and \(\alpha, \gamma \in [0, 1] \) and \([\beta_1, \beta_2] \in I \). Let \(M^A_B(A_0), B^A_B(A_0) \) and \(J^A_B(A_0) \) are nonempty. Obviously \(\forall m \in M^A_B(A_0), \forall m \in B^A_B(A_0) \) and \(\forall m \in J^A_B(A_0) \). Let \(x_1, x_2, y_1, y_2, z_1 \), and \(z_2 \in W \) such that \((x_1 \rightarrow x_2, x_1 \in M^A_B(A_0)) \) and \((z_1 \rightarrow z_2, z_1 \in J^A_B(A_0)) \). Then:

\[M^A_B(x_2) \geq \min \left\{ M^A_B((x_1 \rightarrow x_2), M^A_B(x_1)) \right\} \geq \alpha \] implies \(x_2 \in M^A_B(A_0) \)

\[B^A_B(y_2) \geq \beta \min \left\{ B^A_B(y_1 \rightarrow y_2), B^A_B(y_1)) \right\} \geq [\beta_1, \beta_2] \] implies \(y_2 \in B^A_B(A_0) \).

\[J^A_B(z_2) \leq \max \left\{ J^A_B(z_1 \rightarrow z_2), J^A_B(z_1) \right\} \leq \gamma \] implies \(z_2 \in J^A_B(A_0) \).

So, \(M^A_B(A_0) \) and \(J^A_B(A_0) \) are implicative filters of W and \(B^A_B(A_0) \) is an intuitionistic fuzzy filter of W.

Conversely, suppose that \(M^A_B(A_0) \) and \(J^A_B(A_0) \) are implicative filters of W and \(B^A_B(A_0) \) is an intuitionistic fuzzy filter of W for all \(\alpha, \gamma \in [0, 1] \) and \([\beta_1, \beta_2] \in I \). For any \(x_m, y_m, z_m \in W \) such that \(M^A_B(x_m) = \alpha, B^A_B(y_m) = [\beta_1, \beta_2] \) and \(J^A_B(z_m) = \gamma \). Then \(x_m \in M^A_B(A_0), y_m \in B^A_B(A_0) \) and \(z_m \in J^A_B(A_0) \), so \(M^A_B(A_0), B^A_B(A_0) \) and \(J^A_B(A_0) \) are nonempty.

For any \(x_1, x_2 \in W \) , let \(\alpha = \min \{ M^A_B(x_1 \rightarrow x_2), M^A_B(x_1) \} \), \([\beta_1, \beta_2] = \min \{ B^A_B(x_1 \rightarrow x_2), B^A_B(x_1) \} \) and \(\gamma = \{ J^A_B(x_1 \rightarrow x_2), J^A_B(x_1) \} \).

Then clearly:

\[M^A_B(x_2) \geq \alpha = \min \{ M^A_B(x_1 \rightarrow x_2), M^A_B(x_1) \} \]

\[B^A_B(y_2) \geq \beta \min \{ [\beta_1, \beta_2] = \min \{ B^A_B(x_1 \rightarrow x_2), B^A_B(x_1) \} \} \]
and
\[J^A_F(z_2) \leq \gamma = \max \{ J^A_F(x_1 \text{ Re } x_2, J^A_F(x_1) \} \].
So, \(A_m = (M^A_T, B^A_I, J^A_F) \) is a \(M^I_B \) filter of \(W \).

Lemma 3.2. If \(A_m \) is a \(M^I_B \) filter of \(W \) then \(M^A_T \cap B^A_I \cap J^A_F \) are implicative filters of \(W \).

Theorem 3.9. Any implicative filter \(A \) of \(w \) is a \((\alpha, [\alpha, \alpha], \alpha) \) cut- \(M^I_B \) of \(W \).

Proof. Let \(A \) is implicative filter of \(W \) and \(\alpha \in [0, 1] \). Consider a \(M^I_B \) set:
\[
A_m = (M^A_T(y_m), [B^A_I(y_m)] B^A_I(y_m)],
\]
\[
J^A_F(y_m) = (\alpha, [\alpha, \alpha], \alpha) \text{ if } y_m \in A_m \text{ and }
\]
\[
A_m = (0_m, [0_m], 0_m) \text{ if } y_m \not\in A_m. \text{ Let } x_m, y_m \in W. \text{ If } y_m \in A \text{ then }
\]
\[
M^A_T(y_m) = \alpha \geq \min \{ M^A_T(x_m \rightarrow y_m), M^A_T(x_m) \},
\]
\[
B^A_I(y_m) = [0, \alpha] \geq \alpha \text{ min } \{ B^A_I(x_m \rightarrow y_m), B^A_I(x_m) \}
\]
and
\[
J^A_F(y_m) \leq \max \{ J^A_F(x_m \rightarrow y_m), J^A_F(x_m) \}.
\]

Suppose \(y_m \not\in A \) then \(x_m \not\in A \) or \(x_m \rightarrow y_m \not\in A \). So
\[
M^A_T(y_m) = 0_m = \min \{ M^A_T(x_m \rightarrow y_m), M^A_T(x_m) \}
\]
\[
B^A_I(y_m) = [0_m, 0_m] = \min \{ B^A_I(x_m \rightarrow y_m), B^A_I(x_m) \}
\]
and
\[
J^A_F(y_m) = 0_m = \max \{ J^A_F(x_m \rightarrow y_m), J^A_F(x_m) \}. \text{ So, } A_m \text{ is } M^I_B \text{ filter of } W. \]

Theorem 3.10. If \(A_m \) is \(M^I_B \) filter of \(W \) then the set
\[
A = \{ x_m \in W/\{ M^A_T(y_m), B^A_I(y_m, y_m), J^A_F(y_m) = (M^A_T(1_m), B^A_I[1_m, 1_m], J^A_F(1_m) \}\}
\]
is a implicative filter of \(W \).

Proof. Clearly
\[
A = \{ x_m \in W/\{ M^A_T(y_m), B^A_I(y_m, y_m), J^A_F(y_m) = (M^A_T(1_m), B^A_I[1_m, 1_m], J^A_F(1_m) \}\},
\]
and \(1_m \in A. \text{ Let } x_m, y_m \in w \text{ such that } x_m, x_m \rightarrow y_m \in A. \text{ Then }
\]
\[
M^A_T(x_m \rightarrow y_m) = M^A_T(x_m) = M^A_T(1_m),
\]
\[
B^A_I(x_m \rightarrow y_m) = B^A_I(x_m) = B^A_I[1_m, 1_m]
\]
and
\[
J^A_F(x_m \rightarrow y_m) = J^A_F(x_m) = J^A_F(1_m).
\]
So,
\[
M^A_T(y_m) \geq \min \{ M^A_T(x_m \rightarrow y - m), M^A_T(x_m) \} = M^A_T(1_m),
\]
\[B_I^A(y_m) \geq^* \text{rmin} \left\{ B_I^A(x_m \rightarrow y_m), B_I^A(x_m) \right\} = B_I^A(1_m) \]

and

\[J_F^A(y_m) \leq \text{max} \left\{ J_F^A(x_m \rightarrow y_m), J_F^A(x_m) \right\} = J_F^A(1_m). \]

That is \(y_m \in A \). So \(A \) a implicative filter of \(W \). \(\square \)

Definition 3.2. A \(M_B^I \) set \(A_m = (M_I^A, B_I^A, J_F^A) \) is on \(W \) is called a \(M_B^I \) \(w \)-lattice filter if it satisfies for all \(x_m, y_m \in W \),

\[
(3.5) \quad M_I^A(x_m \land y_m) \geq \min \left\{ M_I^A(x_m), M_I^A(y_m) \right\}, \\
B_I^A(x_m \land y_m) \geq^* \text{rmin} \left\{ B_I^A(x_m), B_I^A(y_m) \right\} \\
\text{and } J_F^A(x_m \land y_m) \leq \max \left\{ J_F^A(x_m), J_F^A(y_m) \right\}
\]

Example 3. The \(M_B^I \) set \(A_m = (M_I^A, B_I^A, J_F^A) \) defined on \(W \) as follows is \(M_B^I \) \(\text{lattice} \) filter of \(W \).

<table>
<thead>
<tr>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_m</td>
<td>.547</td>
<td>[.557 , .6]</td>
<td>.451</td>
</tr>
<tr>
<td>(x_m)</td>
<td>.547</td>
<td>[.557 , .6]</td>
<td>.451</td>
</tr>
<tr>
<td>(y_m)</td>
<td>.721</td>
<td>[.561 , .64]</td>
<td>.331</td>
</tr>
<tr>
<td>(z_m)</td>
<td>.721</td>
<td>[.561 , .64]</td>
<td>.331</td>
</tr>
<tr>
<td>(v_m)</td>
<td>.547</td>
<td>[.557 , .6]</td>
<td>.451</td>
</tr>
<tr>
<td>(1_m)</td>
<td>.721</td>
<td>[.561 , .64]</td>
<td>.331</td>
</tr>
</tbody>
</table>

Theorem 3.11. Every \(M_B^I \) \(w \)-filter \(A_m \) of \(W \) is \(M_B^I \) \(\text{lattice filter} \) of \(W \).

Proof. Let \(A_m \) is a \(M_B^I \) \(w \)-filter of \(W \).

\[
M_I^A(x_m \land y_m) \geq \min \left\{ M_I^A(x_m \rightarrow (x_m \land y_m)), M_I^A(x_m) \right\} \\
= \min \left\{ M_I^A(x_m \rightarrow y_m), M_I^A(x_m) \right\} \\
\geq \min \left\{ \text{min} \left\{ M_I^A(y_m \rightarrow (x_m \land y_m)), M_I^A(y_m) \right\}, M_I^A(x_m) \right\} \\
\geq \min \left\{ \text{min} \left\{ M_I^A(1_m), M_I^A(y_m) \right\}, M_I^A(x_m) \right\} \\
= \min \left\{ M_I^A(y_m), M_I^A(x_m) \right\}
\]

\[
B_I^A(x_m \land y_m) \geq^* \text{rmin} \left\{ B_I^A(x_m \rightarrow (x_m \land y_m)), B_I^A(x_m) \right\} \\
= \text{min} \left\{ B_I^A(x_m \rightarrow y_m), B_I^A(x_m) \right\} \\
\geq^* \text{min} \left\{ \text{min} \left\{ B_I^A(y_m \rightarrow (x_m \land y_m)), B_I^A(y_m) \right\}, B_I^A(x_m) \right\} \\
\geq^* \text{min} \left\{ \text{min} \left\{ B_I^A(1_m), B_I^A(y_m) \right\}, B_I^A(x_m) \right\}
\]
\[
J^A_B(x_m \land y_m) \leq \min \left\{ J^A_B(x_m \to (x_m \land y_m)), J^A_B(x_m) \right\}
\]

\[
= \min \left\{ J^A_F(x_m \to y_m), J^A_F(x_m) \right\}
\]

\[
\leq \min \left\{ \min \left\{ J^A_F(y_m \to (x_m \land y_m)), J^A_F(y_m) \right\}, J^A_F(x_m) \right\}
\]

\[
\leq \min \left\{ \min \left\{ J^A_F(1_m), J^A_F(y_m) \right\}, J^A_F(x_m) \right\}
\]

\[
= \min \left\{ J^A_F(y_m), J^A_F(x_m) \right\}.
\]

So \(A_m \) of \(W \) is \(M^A_B \)-lattice filter of \(W \).

\[\square \]

Remark 3.1. The \(M^A_B \)-lattice filter of \(W \) is need not to be a \(M^A_B \)-filter of \(W \). For example the \(M^A_B \)-lattice filter of \(A_m \) of \(W \) in example 3 is not a \(M^A_B \)-filter of \(W \) because \(M^A_B(z_m) \leq \min \{ M^A_I(y_m \to z_m), M^A_I(y_m) \} \).

References

[13] S. RAGAMAYI, Y. BHARGAVI: Some results on homomorphism of vague ideal of a gamma-
nearring, International Journal of Scientific and Technology Research, 8(11) (2019), 3809-
3812.

of Applied Mathematics, 23(4) (2010), 713-720.

difference control systems, International Journal of Civil Engineering and Technology, 8(12)

making problem, ARPN Journal of Engineering and Applied Sciences, 13(7) (2018), 2500-
2504.

making problem, Journal of Advanced Research in Dynamical and Control Systems, 10(2)

[18] F. SMARANDACHE: Neutrosophic set, a generalization of intuitionistic fuzzy sets, Interna-

equations for cooling problems, International Journal of Mechanical Engineering and

DEPARTMENT OF MATHEMATICS
K.L.UNIVERSITY, A.P., INDIA
Email address: anitha.t537@gmail.com

DEPARTMENT OF MATHEMATICS
NAGARJUNA UNIVERSITY, A.P., INDIA
Email address: amarendravelisela@ymail.com

DEPARTMENT OF MATHEMATICS
APIIIT NIZVID, A.P., INDIA
Email address: bnbattu@rguktn.ac.in