IRREGULAR COLORING OF SOME SPECIAL GRAPHS

R. AVUDAINAYAKI AND D. YOKESH

ABSTRACT. For a graph G and a proper coloring $c : V(G) \to \{1, 2, 3, \ldots, k\}$ of the vertices of G for some positive integer k, the color code of a vertex v of G (with respect to c) is the ordered $(k+1)$-tuple $\text{code}(v) = (a_0, a_1, a_2, \ldots, a_k)$ where a_0 is the color assigned to v and $1 \leq i \leq k$, a_i is the number of vertices of G adjacent to v that are colored i. The coloring c is irregular if distinct vertices have distinct color codes and the irregular chromatic number $\chi_{ir}(G)$ of G is the minimum positive integer k for which G has an irregular k-coloring. In this paper, we obtain the values of irregular coloring for $SF(n,1)$, friendship graph and splitting graph of star graph.

1. INTRODUCTION

Let $G(V, E)$ be simple connected graph. A proper coloring of a graph G is a function $c : V(G) \to N$ having the property that $c(u) \neq c(v)$ for every pair u, v of adjacent vertices of G. A k-coloring of G uses k colors. The chromatic number $\chi(G)$ of G is the minimum integer k for which G admits a k-coloring. In a graph G, a proper coloring $c : V(G) \to \{1, 2, 3, \ldots, k\}$ of the vertices of G for some positive integer k, the color code of a vertex v of G (with respect to c) is the ordered $(k+1)$-tuple $\text{code}(v) = (a_0, a_1, a_2, \ldots, a_k)$, where a_0 is the color assigned to v and $1 \leq i \leq k$, a_i is the number of vertices of G adjacent to v that are colored i. The coloring c is irregular if distinct vertices have distinct color codes and the
irregular chromatic number $\chi_{ir}(G)$ of G is the minimum positive integer k for which G has an irregular k-coloring. Irregular coloring were introduced in [4] and studied further in [5] inspired by the problem in graph theory concerns finding means to distinguish all the vertices of a connected graph. Further some more results of irregular coloring of graphs are discussed in [1, 2, 6]. For graph theoretic terminology we refer to Harary [3]. In this paper, we find that the irregular coloring of $SF(n, 1)$ graph, friendship graph and splitting graph of star graph.

2. MAIN RESULTS

Definition 2.1. An $SF(n, m)$ is a graph consisting of a cycle C_n, $n \geq 3$ and n set of m independent vertices where each set joins each of the vertices of C_n.

Theorem 2.1. Let $G = SF(n, 1)$, where $n \geq 3$. Then $2 \binom{k-1}{2} + 1 \leq n \leq 2 \binom{k}{2}$ if and only if $\chi_{ir}(G) = k$.

Proof. Let $V(G) = \{u_1, u_2, \ldots, u_n\} \cup \{v_1, v_2, \ldots, v_n\}$ and $E(G) = \{u_iu_i; 1 \leq i \leq n\} \cup \{u_iu_{i+1}; 1 \leq i \leq n-1\} \cup u_nu_1$. Assume that $\chi_{ir}(G) = k$. We have to prove that $2 \binom{k-1}{2} + 1 \leq n \leq 2 \binom{k}{2}$. Assume to the contrary that $n \geq 2 \binom{k}{2} + 1$ or $n \leq 2 \binom{k-1}{2}$.

Case (i): $n \geq 2 \binom{k}{2} + 1$

Let $A_1, A_2, \ldots, A_{\binom{k}{2}}, A_1', A_2', \ldots, A_{\binom{k}{2}}'$ be the $2 \binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, \ldots, k\}$, where $A_l = (i, j)$ and $A_l' = (j, i)$, $1 \leq i, j \leq k; 1 \leq l \leq \binom{k}{2}$

and by our assumption $n \geq 2 \binom{k}{2} + 1$, it follows that there exists two vertices $u_i, v_j \in V(G)$ such that $\text{code}(u_i) \neq \text{code}(v_j)$, which is a contradiction. Hence $n \leq 2 \binom{k}{2}$.

Case (ii): $n \leq 2 \binom{k-1}{2}$

Let $A_1, A_2, \ldots, A_{\binom{k}{2}}, A_1', A_2', \ldots, A_{\binom{k-1}{2}}'$ be the $2 \binom{k-1}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k - 1\}$. We can define a coloring c of G by assigning the 2 distinct colors in A_l and A_l' to the n vertices of $V(G)$, where $1 \leq l \leq \binom{k-1}{2}$. Since $n \leq 2 \binom{k-1}{2}$. Hence c is an irregular coloring with at most $k - 1$ colors. Thus $\chi_{ir}(G) \leq k - 1$, this is a contradiction to our assumption. Hence $n \leq 2 \binom{k-1}{2} + 1$.

From the above two cases, we get $2 \binom{k-1}{2} + 1 \leq n \leq 2 \binom{k}{2}$ and to prove $\chi_{ir}(G) = k$.

Conversely, assume that $2 \binom{k-1}{2} + 1 \leq n \leq 2 \binom{k}{2}$ and to prove $\chi_{ir}(G) = k$.
Let $A_1, A_2, \ldots, A_{\binom{k}{2}}$, $A'_1, A'_2, \ldots, A'_{\binom{k}{2}}$ be the $2 \binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k\}$. Since $n \leq 2 \binom{k}{2}$, we can define a coloring c of G by assigning the 2 distinct colors in A_i and A'_i to the $2n$ vertices of $V(G)$. By the argument used in Case (ii), this coloring is irregular and uses at most k colors. Thus $\chi_{ir}(G) \leq k$. On the other hand, since $n \geq 2 \binom{k-1}{2} + 1$ and there are $2 \binom{k-1}{2}$ distinct subsets in $\{1, 2, \ldots, k-1\}$, the argument used in Case (i) shows that there is no irregular coloring of G using $k-1$ or fewer colors. Thus $\chi_{ir}(G) \geq k$ and so $\chi_{ir}(G) = k$.

Definition 2.2. The friendship graph F_n is one-point union of n copies of cycle C_3.

Theorem 2.2. Let $G = F_n$ be a friendship graph. Then $\binom{k-1}{2} + 1 \leq n \leq \binom{k}{2}$ if and only if $\chi_{ir}(G) = k + 1$.

Proof. Let $G = F_n$ be a friendship graph. Assume that $\chi_{ir}(G) = k + 1$. Let

$V(G) = \{u_1, u_2, \ldots, u_n\} \cup \{v_1, v_2, \ldots, v_n\} \cup w$

and

$E(G) = \{u_i v_i; 1 \leq i \leq n\} \cup \{w u_i; 1 \leq i \leq n\} \cup \{w v_i; 1 \leq i \leq n\}$

with $\deg(w) = 2n$. Assign $c(w) = k + 1$. We have to prove that $\binom{k-1}{2} + 1 \leq n \leq \binom{k}{2}$. Assume to the contrary that $n \geq \binom{k}{2} + 1$ or $n \geq \binom{k-1}{2}$.

Case (i): $n \geq \binom{k}{2} + 1$

Let $A_1, A_2, \ldots, A_{\binom{k}{2}}$ be the $\binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k\}$, where $A_i = (i, j)$ $1 \leq i, j \leq k; 1 \leq l \leq \binom{k}{2}$ and by our assumption $n \geq \binom{k}{2} + 1$, it follows that there exists two pair of vertices (u_l, v_l) and (u_m, v_m) such that $\text{code}(u_l) = \text{code}(u_m)$ and $\text{code}(v_l) = \text{code}(v_m)$, which is a contradiction. Hence $n \leq \binom{k}{2}$.

Case (ii): $n \geq \binom{k-1}{2}$

Let $A_1, A_2, \ldots, A_{\binom{k-1}{2}}$ be the $\binom{k-1}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k-1\}$. We can define a coloring c of G by assigning the 2 distinct colors in A_i to the n vertices of $V(G)$, where $1 \leq l \leq \binom{k-1}{2}$. Since $n \geq \binom{k-1}{2}$. Then c is an irregular coloring with at most $k-1$ colors and $c(w) = 1$. Thus $\chi_{ir}(G) \leq k$, which is a contradiction to our assumption. Hence $n \geq \binom{k-1}{2} + 1$. From the above two cases we get $\binom{k-1}{2} + 1 \leq n \leq \binom{k}{2}$.

Conversely, assume that $\binom{k-1}{2} + 1 \leq n \leq \binom{k}{2}$ and to prove $\chi_{ir}(G) = k + 1$. Let $A_1, A_2, \ldots, A_{\binom{k}{2}}$ be the $\binom{k}{2}$ distinct 2 element subsets of the set $\{1, 2, 3, \ldots, k\}$.

Since \(n \leq \binom{k}{2} \), we can define a coloring of \(G \) by assigning the 2 distinct colors in \(A_i \) to the \(n \) vertices of \(V(G) \). By the argument used in Case (ii), this coloring is irregular and uses at most \(k \) colors. Assign \(c(w) = k + 1 \). Thus \(\chi_{ir}(G) \leq k + 1 \). On the other hand, Since \(n \geq \binom{k-1}{2} + 1 \) and there are \(\binom{k-1}{2} + 1 \) distinct subsets in \(\{1, 2, \ldots, k-1\} \), the argument used in case (i) shows that there is no irregular coloring of \(G \) using \(k - 1 \) or fewer colors. Assign \(c(w) = k + 1 \). Thus \(\chi_{ir}(G) \geq k + 1 \) and hence \(\chi_{ir}(G) = k + 1 \). □

Definition 2.3. A tree containing exactly one vertex which is not a pendent vertex is called a star graph \(K_{1,n} \). For a graph \(G \), the splitting graph \(Spl(G) \) of a graph \(G \) is obtained by adding a new vertex \(v' \) corresponding to each vertex \(v \) of \(G \) such that \(N(v) = N(v') \).

Theorem 2.3. If \(G \) is a splitting graph of \(K_{1,n} \) then \(\chi_{ir}(S(K_{1,n})) = n + 1 \).

Proof. Let \(G \) be a splitting graph of \(K_{1,n} \) with vertices \(V(G) = \{v, v_1, v_2, \ldots, v_n, v', v'_1, v'_2, \ldots, v'_n\} \) and \(E(G) = \{vv_i; 1 \leq i \leq n\} \cup \{v_i v'_i; 1 \leq i \leq n\} \cup \{v'_i v'_j; 1 \leq i, j \leq n\} \). First to prove that \(\chi_{ir}(S(K_{1,n})) \geq n + 1 \). In \(G \), \(N(v'_i) = N(v_j) \) for all \(1 \leq i, j \leq n \). Therefore, we need \(n \) distinct colors for the vertices set \(\{v_i\} \) and \(\{v'_i\} \), where \(1 \leq i \leq n \), since \(N(v_i) \neq N(v'_i) \). But \(v' \) is adjacent to all the vertices of \(v'_i, 1 \leq i \leq n \). Hence assign the color \(n + 1 \) to \(v' \). Thus \(\chi_{ir}(S(K_{1,n})) \geq n + 1 \). Next to prove that \(\chi_{ir}(S(K_{1,n})) \leq n + 1 \). The following \(n + 1 \) coloring for \(S(K_{1,n}) \) is irregular. For \(1 \leq i \leq n \), assign the color \(i \) for \(v_i \) and \(v'_i \), \(i + 1 \) for \(v \) and \(v' \). Since \(\deg(v_i) \neq \deg(v'_i) \) and \(\deg(v) \neq \deg(v') \), it follows that \(\text{code}(v_i) \neq \text{code}(v'_i) \) and \(\text{code}(v) \neq \text{code}(v') \). Hence \(\chi_{ir}(S(K_{1,n})) \neq n + 1 \). Thus, we get \(\chi_{ir}(S(K_{1,n})) = n + 1 \). □

References

DEPARTMENT OF MATHEMATICS
SRI SAI RAM INSTITUTE OF TECHNOLOGY
CHENNAI-44, INDIA
Email address: avuramesh2004@gmail.com

DEPARTMENT OF MATHEMATICS
SMK FOMRA INSTITUTE OF TECHNOLOGY
CHENNAI-03, INDIA
Email address: yokeshzabin@yahoo.com