OBTAINT SUBCLASS OF ANALYTIC FUNCTIONS CONNECTED WITH
CONVOLUTION OF POLYLOGARITHM FUNCTIONS

T. STALIN, M. THIRUCHERAN, AND A. ANAND

ABSTRACT. In this work, we investigate some properties for the subclass
$P_{\beta,\lambda,\gamma,b}(\phi(z))$ of analytic function related with the linear differential operator
$R_{\lambda,\delta}f(z)$ defined by polylogarithm functions. And also, we obtain coefficient
inequalities, extreme points, radii of convexity and starlikeness, growth and
distortion bounds for the subclass $P_{\beta,\lambda,\gamma,b}(\phi(z))$.

1. INTRODUCTION

Let A be the class of functions of the form

\[(1.1) \quad f(z) = z + \sum_{k=2}^{\infty} a_k z^k,\]

which are analytic in the unit disk $U = \{ z : |z| < 1 \}$. For functions $f(z)$ given by
(1.1) and $g(z)$ given by
\[g(z) = z + \sum_{k=2}^{\infty} b_k z^k,\]

the convolution of $f(z)$ and $g(z)$ is defined by
\[(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.\]
If \(f(z) \) and \(g(z) \) are analytic in \(\mathcal{U} \), we state that \(f(z) \) is subordinate to \(g(z) \), i.e. \(f(z) \preceq g(z) \), if a Schwarz function \(w(z) \) exists, with \(w(0) = 0 \) and \(|w| < 1 \) such that \(f(z) = g(w(z)) \). Moreover, if the function \(g(z) \) is univalent in \(\mathcal{U} \), then the above subordination is equivalence holds (see [7, 8]). \(f(z) \prec g(z) \) if and only if \(f(0) = g(0) \), and \(f(\mathcal{U}) \subset g(\mathcal{U}) \).

For \(f \in A \), Al-Oboudi [2] initiated the following differential operator:

\[
D_\delta^n f(z) = z + \sum_{k=2}^{\infty} [1 + (k-1)\delta]^n a_k z^k, \quad (n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \delta > 0 : z \in \mathcal{U}).
\]

For \(f \in A \), Ruscheweyh [9] established the following differential operator:

\[
\mathcal{R}_\lambda f(z) = \frac{z}{(1-z)^{\lambda+1}} \ast f(z) = z + \sum_{k=2}^{\infty} \frac{(\lambda+k-1)!}{\lambda!(k-1)!} a_k z^k, \quad (\lambda > -1).
\]

Consider \(p \) is the class of functions of the form \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots \) analytic in \(\mathcal{U} \), \(\text{Re} \{p(z)\} > 0 \).

Consider the Polylogarithm function \(E(n, \delta) \) given by

\[
E(n, \delta) = \sum_{k=1}^{\infty} \frac{z^k}{[1 + (k-1)\delta]^n}.
\]

Note that \(E(-1, 1) = \frac{z}{(1-z)^2} \) for \(k = 1, 2, 3, \ldots \) is Koebe function. For further additional information about polylogarithms in theory of univalent functions see Ponnusamy and Sabapathy [7], K. Al Shaqsi and M. Daraus [4] and Ponnusamy [8].

Now we introduce a function \(E^\kappa(n, \delta) \) given by

\[
E(n, \delta) * E^\kappa(n, \delta) = \frac{z}{(1-z)^{\lambda+1}}, \lambda > -1, n \in \mathbb{Z},
\]

thus obtaining the linear operator

\[
(1.2) \quad \mathcal{R}_{\lambda, \delta}^n f(z) = E^\kappa(n, \delta) \ast f(z).
\]

Now we come across the explicit form of the function

\[
E^\kappa(n, \delta) = \sum_{k=1}^{\infty} [1 + (k-1)\delta]^n \frac{(\lambda+k-1)!}{\lambda!(k-1)!} z^k.
\]

From equation (1.2), we define

\[
\mathcal{R}_{\lambda, \delta}^n f(z) = \sum_{k=2}^{\infty} [1 + (k-1)\delta]^n \frac{(\lambda+k-1)!}{\lambda!(k-1)!} a_k z^k.
\]
Note that $R_{0,1}^n = D^n, R_{\lambda,\delta}^0 = D^\lambda$ which give the Salagean differential operator [10] and Ruscheweyh differential operator [9] respectively. It is obvious that the operator includes two well known operators. Also note that $R_{0,\delta}^0 = f(z)$ and $R_{0,\delta}^1 = R_{0,1}^1 = z f'(z)$.

Definition 1.1
We define $P_{\beta,\lambda,\delta,b}(\phi(z))$ be the class of the functions $f \in A$ for which

$$1 + \frac{1}{b} \left(\frac{z (R_{\lambda,\delta}^n f(z))'}{R_{\lambda,\delta}^n f(z)} - 1 \right) - \beta \left| \frac{z (R_{\lambda,\delta}^n f(z))'}{R_{\lambda,\delta}^n f(z)} - 1 \right| < \phi(z),$$

where $n, \lambda \in N_0, \beta > 0, \delta > 0, b > 0, \phi \in p; z \in U$.

Definition 1.2
For $\phi(z) = \frac{1+(-2)z}{(1-z)}$, we define $P_{\beta,\lambda,\delta,b}^n (\phi(z)) = P_{\beta,\lambda,\delta,b}^n (\alpha), f \in A$ for which

$$1 + \frac{1}{b} \left(\frac{z (R_{\lambda,\delta}^n f(z))'}{R_{\lambda,\delta}^n f(z)} - 1 \right) - \beta \left| \frac{z (R_{\lambda,\delta}^n f(z))'}{R_{\lambda,\delta}^n f(z)} - 1 \right| > \alpha,$$

where $n, \lambda \in N_0, \beta > 0, \delta > 0, b > 0, \phi \in p, 0 \leq \alpha \leq 1; z \in U$.

Note that $P_{0,0,1,1}^n (\phi(z)) = K_0^n (\phi(z)), P_{0,0,1,1}^n (\alpha) = R_{\lambda}^n (\alpha)$ studied by K. AlShaqsi and M. Darus [4], $P_{0,0,1,1}^0 (\phi(z)) = S^* (\phi(z))$ studied by Ma and Minda [6], $P_{0,0,1,1}^0 (\alpha) = R_{\lambda} (\alpha)$ introduced and studied by Ahuja [1] and $P_{0,0,1,1}^0 (\alpha) = R_{\alpha} (\alpha)$ introduced and studied by Kadioglu [3].

2. Main results

Theorem 2.1
Let $f(z)$ be defined by (1.1). Then $f \in A$ if and only if

$$\sum_{k=2}^{n} (kb\beta - b\beta - k + 1 - b + b\alpha) [1 + (k - 1)\delta]^n C(\lambda) \left| a_k \right| \leq (1 - \alpha)b,$$

where $C(\lambda) = \frac{(k+\lambda-1)!}{\lambda!(k-1)!}, 0 \leq \alpha < 1, n \in N_0 = N \cup \{0\}, \delta > 0, b > 0, \lambda \geq 0; z \in U$.

Proof. Suppose that the inequality (2.1) is true and $|z| < 1$. Then it is proved that the values of (1.3) lies in a circle centered at $w = 1$ whose radius is $(1 - \alpha)b$. It is sufficient to show that $\left| 1 + \frac{1}{b} \left(\frac{z (R_{\lambda,\delta}^n f(z))'}{R_{\lambda,\delta}^n f(z)} - 1 \right) - \beta \left| \frac{z (R_{\lambda,\delta}^n f(z))'}{R_{\lambda,\delta}^n f(z)} - 1 \right| - \alpha + 1 \right| < 1$, which gives $\sum_{k=2}^{n} (kb\beta - b\beta - k + 1 - b + b\alpha) [1 + (k - 1)\delta]^n C(\lambda) \left| a_k \right| \leq (1 - \alpha)b$. Hence the condition (2.1) holds.
Conversely, let us assume that the function \(f \) defined by (1.1) is in the class \(P_{\beta,\lambda, \delta, b}^n(\alpha) \), then \(\Re (1 + \frac{b}{\lambda} \left(\frac{z(\mathcal{R}_{\lambda, \delta}^n(z)^\prime - 1)}{\mathcal{R}_{\lambda, \delta}^n(z)} - \beta \right)) > \alpha \), by the value of \(z \) on the real axis, let \(z \to 1^- \) through real values, we obtain the result

\[
\sum_{k=2}^{\infty} (kb\beta - b\beta - k + 1 - b + b\alpha)[1 + (k - 1)\delta]nC(\lambda) |a_k| \leq (1 - \alpha)b.
\]

Hence the result is sharp for the function \(f(z) = z + (1 - \alpha)b \).

Theorem 2.2. Let

\[
f_1(z) = z, f_k(z) = z + \sum_{k=2}^{\infty} \eta_k \frac{(1 - \alpha)b}{\psi(\lambda)} z^k, k = 2, 3, ...
\]

where \(\psi(\lambda) = \sum_{k=2}^{\infty} (kb\beta - b\beta - k + 1 - b + b\alpha)[1 + (k - 1)\delta]nC(\lambda) \). Then \(f \in P_{\beta,\lambda, \delta, b}^n(\alpha) \) if and only if it can be expressed in the form \(f(z) = \sum_{k=1}^{\infty} \eta_k f_k(z) \) where \(\eta_k > 0 \) and \(\sum_{k=1}^{\infty} \eta_k = 1 \).

Proof. Let

\[
f(z) = \sum_{k=1}^{\infty} \eta_k f_k(z)
\]

\[
= z + \sum_{k=2}^{\infty} \eta_k \frac{(1 - \alpha)b}{\psi(\lambda)} z^k
\]

\[
= \sum_{k=2}^{\infty} \eta_k \frac{(1 - \alpha)b}{\psi(\lambda)} \psi(\lambda)
\]

\[
= (1 - \alpha)b \sum_{k=1}^{\infty} \eta_k
\]

\[
= (1 - \alpha)b(1 - \eta_1) < (1 - \alpha)b
\]

which shows that \(f \in P_{\beta,\lambda, \delta, b}^n(\alpha) \).

Conversely, suppose that \(f \in P_{\beta,\lambda, \delta, b}^n(\alpha) \). Since \(|a_k| \leq \frac{(1 - \alpha)b}{\psi(\lambda)}, k = 2, 3, ... \) Let \(\eta_k \leq \frac{\psi(\lambda)}{(1 - \alpha)b}, \eta_1 = 1 - \sum_{k=2}^{\infty} \eta_k \). Then we obtain \(f(z) = \sum_{k=1}^{\infty} \eta_k f_k(z) \). \(\square \)
Theorem 2.3. Let \(f(z) = z + \sum_{k=2}^{\infty} |a_k| z^k \), \(f \in \mathcal{P}_{\beta,\lambda,\delta,b}^n(\alpha) \), then for \(|z| = r \), we have

\[
\begin{align*}
 r - \frac{(1 - \alpha)b}{(\beta b + \alpha b - b - 1)(1 + \delta)^n(\lambda + 1)} r^2 &\leq |f(z)| \\
 \leq r + \frac{(1 - \alpha)b}{(\beta b + \alpha b - b - 1)(1 + \delta)^n(\lambda + 1)} r^2
\end{align*}
\]

and

\[
\begin{align*}
 1 - \frac{2(1 - \alpha)b}{(\beta b + \alpha b - b - 1)(1 + \delta)^n(\lambda + 1)} r &\leq |f'(z)| \\
 \leq 1 + \frac{2(1 - \alpha)b}{(\beta b + \alpha b - b - 1)(1 + \delta)^n(\lambda + 1)} r
\end{align*}
\]

Putting \(\beta = 0, \delta = 1 \) in the above theorem the result obtained is analogue the results of M. Thirucheran, M. Vinothkumar and T. Stalin [5].

Corollary 2.1. Let \(f(z) = z + \sum_{k=2}^{\infty} |a_k| z^k \), \(f \in \mathcal{P}_{\beta,\lambda,\delta,b}^n(\alpha) \), then for \(|z| = r \) we have

\[
\begin{align*}
 r - \frac{(1 - \alpha)b}{(\alpha b - b - 1)(2)^n(\lambda + 1)} r^2 &\leq |f(z)| \\
 \leq r + \frac{(1 - \alpha)b}{(\alpha b - b - 1)(2)^n(\lambda + 1)} r^2
\end{align*}
\]

and

\[
\begin{align*}
 1 - \frac{2(1 - \alpha)b}{(\alpha b - b - 1)(2)^n(\lambda + 1)} r &\leq |f'(z)| \\
 \leq 1 + \frac{2(1 - \alpha)b}{(\alpha b - b - 1)(2)^n(\lambda + 1)} r
\end{align*}
\]

Putting \(\beta = 0, \delta = 1, b = 1 \) in the above theorem the result obtained is analogue to the results of K. AlShaqqi and M. Darus [4].

Corollary 2.2. Let \(f(z) = z + \sum_{k=2}^{\infty} |a_k| z^k \), \(f \in \mathcal{P}_{\beta,\lambda,\delta,b}^n(\alpha) \), then for \(|z| = r \) we have

\[
\begin{align*}
 r - \frac{(1 - \alpha)}{(\alpha - 2)(2)^n(\lambda + 1)} r^2 &\leq |f(z)| \\
 \leq r + \frac{(1 - \alpha)}{(\alpha - 2)(2)^n(\lambda + 1)} r^2
\end{align*}
\]

and

\[
\begin{align*}
 1 - \frac{2(1 - \alpha)}{(\alpha - 2)(2)^n(\lambda + 1)} r &\leq |f'(z)| \\
 \leq 1 + \frac{2(1 - \alpha)}{(\alpha - 2)(2)^n(\lambda + 1)} r
\end{align*}
\]

Theorem 2.4. The class \(\mathcal{P}_{\beta,\lambda,\delta,b}^n(\alpha) \) is convex.

Proof. Let the function \(f_1(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k \), \(a_{k,j} \geq 0, j = 1, 2 \) lies in the class \(f \in \mathcal{P}_{\beta,\lambda,\delta,b}^n(\alpha) \). It is sufficient to prove that \(h(z) = (\gamma + 1)f_1(z) - \gamma f_2(z), 0 \leq z \leq 1, \)
the class \(f \in \mathcal{P}_{\beta, \lambda, \delta, b}^n(\alpha) \). Since \(h(z) = z + \sum_{k=2}^{\infty} [(1 + \gamma)a_{k,1} - \gamma a_{k,2}] z^k \), which implies that
\[
\sum_{k=2}^{\infty} (kb\beta - b\beta - k + 1 - b + b\alpha)[1 + (k - 1)\delta]^nC(\lambda)(1 + \gamma)a_{k,1} \\
+ (kb\beta - b\beta - k + 1 - b + b\alpha)[1 + (k - 1)\delta]^nC(\lambda)(\gamma)a_{k,2} \\
\leq (1 + \gamma)(1 - \alpha)b + \gamma(1 - \alpha)b \\
\leq (1 - \alpha)b
\]
therefore \(h \in \mathcal{P}_{\beta, \lambda, \delta, b}^n(\alpha) \). Hence \(\mathcal{P}_{\beta, \lambda, \delta, b}^n(\alpha) \) is convex.

Theorem 2.5. Let \(f \in \mathcal{P}_{\beta, \lambda, \delta, b}^n(\alpha) \), then \(f \) is close-to-convex of order \(\sigma (0 \leq \sigma < 1) \) in the disc \(|z| < r_1 \), where \(r_1 := \left((1 - \sigma)[(kb\beta - b\beta - k + 1 - b + b\alpha][1 + (k - 1)\delta]^nC(\lambda)] \right)^{\frac{1}{k-1}}, (k \geq 2) \).

Theorem 2.6. Let \(f \in \mathcal{P}_{\beta, \lambda, \delta, b}^n(\alpha) \), then \(f \) is starlike of order \(\sigma (0 \leq \sigma < 1) \) in the disc \(|z| < r_2 \), where \(r_2 := \inf \left((1 - \sigma)[(kb\beta - b\beta - k + 1 - b + b\alpha][1 + (k - 1)\delta]^nC(\lambda)] \right)^{\frac{1}{k-1}}, (k \geq 2) \).

Theorem 2.7. Let \(f \in \mathcal{P}_{\beta, \lambda, \delta, b}^n(\alpha) \), then \(f \) is convex of order \(\sigma (0 \leq \sigma < 1) \) in the disc \(|z| < r_3 \), where \(r_3 := \inf \left((1 - \sigma)[(kb\beta - b\beta - k + 1 - b + b\alpha][1 + (k - 1)\delta]^nC(\lambda)] \right)^{\frac{1}{k-1}}, (k \geq 2) \).

ACKNOWLEDGMENT

The authors thank referees for their valuable hints to upgrading this paper.

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MADRAS
VEL TECH RANGA SANKU ARTS COLLEGE, AVADI
CHENNAI-600 062, TAMIL NADU, INDIA.
Email address: goldstaleen@gmail.com

POST GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MADRAS
L N GOVERNMENT COLLEGE, PONNERI
CHENNAI - 624 302, TAMIL NADU, INDIA.
Email address: drthirucheran@gmail.com

POST GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MADRAS
L N GOVERNMENT COLLEGE, PONNERI
CHENNAI - 624 302, TAMIL NADU, INDIA.
Email address: sivaanand83@gmail.com