COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH HORADAM POLYNOMIAL

D. KAVITHA, K. DHANALAKSHMI, AND N. ARULMOZHI

ABSTRACT. In this present article, we studied and examined the novel general subclasses of the function class $Σ$ of bi-univalent function defined in the open unit disk, which are associated with the Horadam polynomial. This study locates estimates on the Taylor - Maclaurin coefficients $|a_2|$ and $|a_3|$ in functions of the class which are considered. Additionally, Fekete-Szegö inequality of functions belonging to this subclasses are also obtained.

1. INTRODUCTION AND PRELIMINARIES

Let $𝒜$ be the family of functions $f(z)$ of the form

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in U) \]

which are analytic in the open unit open disk $U = \{ z : z \in \mathbb{C}, |z| < 1 \}$. Let S be class of all functions in $𝒜$ which are univalent and normalized by the conditions $f(0) = 0 = f^\prime(0) - 1$ in U. Two of the most famous subclasses of univalent functions class S are the class $S^\ast(\alpha)(0 \leq \alpha < 1)$ of starlike functions of order α and the class $C(\alpha)(0 \leq \alpha < 1)$ of convex functions of order α. For two functions $f(z)$ and $g(z)$,

1 corresponding author

2020 Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Analytic functions, Univalent and Bi-univalent functions, Fekete-Szegö problem, Horadam polynomials, Coefficient bounds.
are analytic in \(U \), we say that the function \(f(z) \) is subordinate to \(g(z) \) in \(U \), written as \(f(z) \prec g(z) \), if there exists an analytic function \(w(z) \) defined on \(U \) with
\[
 w(0) = 0 \quad \text{and} \quad |w(z)| < 1, \quad (z \in U),
\]
such that \(f(z) = g(w(z)) \) for all \((z \in U) \). Also, it is known that
\[
 f(z) \prec g(z) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).
\]

The well-known Koebe one-quarter theorem [7] ensures that the image of \(U \) under every univalent function \(f \in A \) contains a disk of radius \(1/4 \). Hence every univalent function \(f \) has an inverse \(f^{-1} \) satisfying \(f^{-1}(f(z)) = z, (z \in U) \) and
\[
 f^{-1}(f(w)) = w, (|w| < r_0(f), r_0(f) \geq 1/4),
\]
where
\[
(1.2) \quad g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_3^2 - 5a_2a_3 + a_4)w^4 + \ldots.
\]

A function \(f \in A \) is said to be bi-univalent in \(U \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(U \). Earlier, Lewin [12] investigated the bi-univalent functions and derived that \(|a_2| < 1.51 \). For the brief history of functions in the class \(\Sigma \), Brannan and Clunie [5], and Srivastava et al. [14] proved some results within these coefficient for different classes. Moreover, Brannan and Taha [6] introduced certain subclasses of the bi-univalent function class \(\Sigma \) for the familiar subclasses \(S^*(\alpha) \) and \(C(\alpha) \). More Recent studies inspired by Horcum and Kocer [10], Abirami et al. [1], Alamoush [2], [3], [4] considered Horadam polynomials \(h_n(x) \), which are given by the following recurrence relation
\[
(1.3) \quad h_n(x) = pxh_{n-1}(x) + qh_{n-2}(x), \quad (n \in \mathbb{N} \geq 2),
\]
with \(h_1 = a, h_2 = bx, \) and \(h_3 = px^2 + q \) where \((a, b, p, q) \) are some real constants.

By taking various values of \(a, b, p \) and \(q \) which leads to various polynomials
- when \(a = b = p = q = 1 \), we obtain the Fibonacci polynomials,
 \(F_n(x) = xF_{n-1}(x) + F_{n-2}(x), F_1(x) = 1, F_2(x) = x; \)
- when \(a = 2, b = p = q = 1 \), we have the Lucas polynomials,
 \(L_{n-1}(x) = xL_{n-2}(x) + L_{n-3}(x), L_0 = 2, L_1 = x; \)
- when \(a = q = 1, b = p = 2 \), we attain the Pell polynomials,
 \(P_n(x) = 2xP_{n-1}(x) + P_{n-2}(x), p_1 = 1, p_2 = 2x; \)
- when \(a = b = p = 2, q = 1 \), we get the Pell-Lucas polynomials,

\[
Q_{n-1}(x) = 2xQ_{n-2}(x) + Q_{n-3}(x), Q_0 = 2, Q_1 = 2x;
\]

- when \(a = 1, b = p = 2, q = 1 \), we obtain the Chebyshev polynomials of second kind sequence,

\[
U_{n-1}(x) = 2xU_{n-2}(x) + U_{n-3}(x), U_0 = 1, U_1 = 2x;
\]

- if \(a = 1, b = p = 2, q = 1 \), we have the Chebyshev polynomials of First kind sequence,

\[
T_{n-1}(x) = 2xT_{n-2}(x) + T_{n-3}(x), T_0 = 1, T_1 = x.
\]

One can refer [8], [9], [11] and [13] for more details connected with these polynomials succession.

The characteristic equation of recurrence relation (1.3) is

\[
t^2 - pxt - q = 0.
\]

This equation has two real roots,

\[
\alpha = \frac{px + \sqrt{p^2x^2 + 4q}}{2},
\]

and

\[
\beta = \frac{px - \sqrt{p^2x^2 + 4q}}{2}.
\]

Remark 1.1. [10] Let \(\Omega(x,z) \) be the generating function of the Horadam polynomials \(h_n(x) \). Then

\[
\Omega(x, z) = \frac{a + (b - ap)xz}{1 - pxz - qz^2} = \sum_{n=1}^{\infty} h_n(x)z^{n-1}.
\]

In this present work, we introduce \(\mathcal{S}_\Sigma(\lambda, \gamma, x) \) and \(\mathcal{M}_\Sigma(\lambda, \gamma, x) \) are the class of bi-univalent functions. Within this, coefficient estimates \(|a_2| \) and \(|a_3| \). The Fekete-Szegö problem are also derived for the function \(f \in \Sigma \) belonging to the new defined subclasses.
2. Set of Main Results

We now define the new bi-univalent subclasses of analytic function.

Definition 2.1. For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \setminus \{0\}$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $S_{\Sigma}(\lambda, \gamma, x)$, if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z)}{(1 - \lambda)z + \lambda f(z)} - 1 \right) \prec \Omega(x, z) + 1 - a$$

and

$$1 + \frac{1}{\gamma} \left(\frac{wg'(w)}{(1 - \lambda)w + \lambda g(w)} - 1 \right) \prec \Omega(x, w) + 1 - a,$$

where $g = f^{-1}$ is given by (1.2) and $z, w \in \mathbb{U}$.

Definition 2.2. For $0 \leq \lambda \leq 1$ and $\gamma \in \mathbb{C} \setminus \{0\}$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $M_{\Sigma}(\lambda, \gamma, x)$, if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda zf'(z)} - 1 \right) \prec \Omega(x, z) + 1 - a$$

and

$$1 + \frac{1}{\gamma} \left(\frac{wg'(w) + w^2g''(w)}{(1 - \lambda)w + \lambda wg'(w)} - 1 \right) \prec \Omega(x, w) + 1 - a,$$

where $g = f^{-1}$ is given by (1.2) and $z, w \in \mathbb{U}$.

Theorem 2.1. Let the function $f \in \Sigma$ be given by (1.1) be in the class $S_{\Sigma}(\lambda, \gamma, x)$. Then

$$(2.2) \quad |a_2| \leq \frac{\gamma |bx| \sqrt{|bx|}}{\sqrt{|bx^2[(\lambda^2 - 3\lambda + 3)\gamma b - (2 - \lambda)^2p] - aq(2 - \lambda)^2|}},$$

$$(2.3) \quad |a_3| \leq \frac{\gamma |bx|}{(3 - \lambda)} + \frac{\gamma^2 (bx)^2}{(2 - \lambda)^2},$$

and for some $\eta \in \mathbb{R}$,

$$|a_3 - \eta a_2^2| \leq \begin{cases} \frac{|\gamma| |bx|}{(3 - \lambda)} & \text{if } |\eta - 1| \leq \sigma_1 \\ \frac{\gamma^2 |bx|^3(\eta - 1)}{|(\lambda^2 - 3\lambda + 3)\gamma b - p(2 - \lambda)^2|bx^2 - qa(2 - \lambda)^2|} & \text{if } |\eta - 1| \geq \sigma_1. \end{cases}$$

Here,

$$\sigma_1 = \frac{|(\lambda^2 - 3\lambda + 3)\gamma b - p(2 - \lambda)^2|bx^2 - qa(2 - \lambda)^2|}{(bx)^2(3 - \lambda)}.$$
Proof. Let \(f \in \Sigma \) be given by the Taylor-Maclaurin expansion (1.1). Then, for some analytic functions \(\Psi \) and \(\Phi \) such that \(\Phi(0) = \psi(0) = 0 \), \(|\psi(z)| < 1 \) and \(|\phi(w)| < 1 \), \(z, w \in U \) and using Definition 2.1, we can write

\[
1 + \frac{1}{\gamma} \left(\frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} - 1 \right) = \Omega(x, \Phi(z)) + 1 - a
\]

and

\[
1 + \frac{1}{\gamma} \left(\frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} - 1 \right) = \Omega(x, \psi(w)) + 1 - a.
\]

Equivalently,

\[
1 + \frac{1}{\gamma} \left(\frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} - 1 \right) = 1 + h_1(x) - a + h_2(x)\Phi(z) + h_3(x)[\Phi(z)]^3 + \ldots
\]

and

\[
1 + \frac{1}{\gamma} \left(\frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} - 1 \right) = 1 + h_1(x) - a + h_2(x)\psi(w) + h_3(x)[\psi(w)]^2 + \ldots.
\]

From (2.4) and (2.5), we obtain

\[
1 + \frac{1}{\gamma} \left(\frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} - 1 \right) = 1 + h_2(x)p_1z + [h_2(x)p_2 + h_3(x)p_3^2]z^2 + \ldots
\]

and

\[
1 + \frac{1}{\gamma} \left(\frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} - 1 \right) = 1 + h_2(x)q_1w + [h_2(x)q_2 + h_3(x)q_3^2]w^2 + \ldots.
\]

Notice that if

\[
|\Phi(z)| = |p_1z + p_2z^2 + p_3z^3 + \ldots| < 1 \quad (z \in U)
\]

and

\[
|\psi(w)| = |q_1w + q_2w^2 + q_3w^3 + \ldots| < 1 \quad (w \in U),
\]

then

\[
|p_i| \leq 1 \quad \text{and} \quad |q_i| \leq 1 \quad (i \in \mathbb{N}).
\]

Thus, upon comparing the corresponding coefficients in (2.6) and (2.7), we have

\[
\frac{(2-\lambda)}{\gamma} a_2 = h_2(x)p_1,
\]

and

\[
\frac{(3-\lambda)a_3 - \lambda(2-\lambda)a_2^2}{\gamma} = h_2(x)p_2 + h_3(x)p_3^2.
\]
\[
(2.10) \quad \frac{-(2 - \lambda)}{\gamma} a_2 = h_2(x)q_1, \\
\text{and} \quad \frac{(3 - \lambda)(2a_2^2 - a_3) - \lambda(2 - \lambda)a_2^2}{\gamma} = h_2(x)q_2 + h_3(x)q_1^2.
\]
From (2.8) and (2.10), we find that
\[
(2.12) \quad p_1 = -q_1
\]
and
\[
(2.13) \quad a_2^2 = \frac{\gamma^2 h_2^2(x)(p_1^2 + q_1^2)}{2(2 - \lambda)^2}.
\]
Adding (2.9) and (2.11), we obtain
\[
(2.14) \quad \frac{2(\lambda^2 - 3\lambda + 3)}{\gamma} a_2^2 = h_2(x)(p_2 + q_2) + h_3(x)(p_1^2 + q_1^2).
\]
By using (2.13) in (2.14), we get
\[
(2.15) \quad a_2^2 = \frac{\gamma^2 h_3^2(x)(p_2 + q_2)}{2(\lambda^2 - 3\lambda + 3)h_2^2(x) - 2h_3(x)(2 - \lambda)^2}.
\]
From (1.3), we have the desired inequality (2.2).

Next, by subtracting (2.11) from (2.9) and in view of (2.12), we have
\[
\frac{2(3 - \lambda)a_3 - 2(3 - \lambda)a_2^2}{\gamma} = h_2(x)(p_2 - q_2) + h_3(x)(p_1^2 - q_1^2)
\]
and
\[
a_3 = a_2^2 + \frac{\gamma h_2(x)(p_2 - q_2)}{2(3 - \lambda)}.
\]
Hence using (2.13) and applying (1.3), we get desired inequality (2.3).

For some \(\eta \in \mathbb{R}\), we write
\[
(2.16) \quad a_3 - \eta a_2^2 = \frac{\gamma h_2(x)(p_2 - q_2)}{2(3 - \lambda)} + (1 - \eta)a_2^2.
\]
Now, by using (2.15) and (2.16), we get
\[
a_3 - \eta a_2^2 = \frac{\gamma^2 h_2^3(x)(1 - \eta)(p_2 + q_2)}{2(\lambda^2 - 3\lambda + 3)\gamma h_2^2(x) - 2(2 - \lambda)^2 h_3(x)} + \frac{\gamma h_2(x)(p_2 - q_2)}{2(3 - \lambda)}
\]
\[
= \gamma h_2(x) \left[\left(\Theta(\eta, x) + \frac{1}{2(3 - \lambda)} \right) p_2 + \left(\Theta(\eta, x) - \frac{1}{2(3 - \lambda)} \right) q_2 \right],
\]
where

\[\Theta(\eta, x) = \frac{\gamma [h_2(x)]^2 (1 - \eta)}{2(\lambda^2 - 3\lambda + 3)\gamma [h_2(x)]^2 - 2(2 - \lambda)^2 h_3(x)}. \]

So, we conclude that

\[|a_3 - \eta a_2^2| \leq \begin{cases}
\frac{|\gamma||h_2(x)|}{3 - \lambda} & \text{if } 0 \leq |\Theta(\eta, x)| \leq \frac{1}{2(3 - \lambda)} \\
2|\gamma||h_2(x)||\Theta(\eta, x)| & \text{if } |\Theta(\eta, x)| \geq \frac{1}{2(3 - \lambda)}.
\end{cases} \]

This proves Theorem 2.1. \(\square\)

For \(\lambda = 1\), Theorem 2.1 readily yields the following coefficient estimates:

Corollary 2.1. Let the function \(f \in \Sigma\) given by (1.1) be in the class \(S_{\Sigma}(1, \gamma, x)\). Then

\[|a_2| \leq \frac{|\gamma||bx|\sqrt{|bx|}}{\sqrt{|bx^2[b - p] - qa|}}, \]

\[|a_3| \leq \frac{|\gamma||bx|}{2} + \gamma^2 b^2 x^2 \]

and for some \(\eta \in \mathbb{R}\),

\[|a_3 - \eta a_2^2| \leq \begin{cases}
\frac{|\gamma||bx|}{3 - \lambda} & \text{if } |\eta - 1| \leq \sigma_2 \\
\gamma^2 |bx|^2 (\eta - 1) & \text{if } |\eta - 1| \geq \sigma_2.
\end{cases} \]

Here,

\[\sigma_2 = \frac{|[b - p]bx^2 - qa|}{2(bx)^2}. \]

In light of Remark 1.1, we have

Corollary 2.2. Let the function \(f \in \Sigma\) given by (1.1) be in the class \(S_{\Sigma}(\lambda, \gamma, x)\). Then

\[|a_2| \leq \frac{2|\gamma||t|\sqrt{|2t|}}{\sqrt{|[\gamma^2 - 3\lambda + 3]2\gamma - 2(2 - \lambda)^2|2t^2 + (2 - \lambda)^2}|}}, \]

\[|a_3| \leq \frac{2|\gamma||t|}{3 - \lambda} + \gamma^2 4t^2 \]

and for some \(\eta \in \mathbb{R}\),

\[|a_3 - \eta a_2^2| \leq \begin{cases}
\frac{|\gamma||2t|}{3 - \lambda} & \text{if } |\eta - 1| \leq \sigma_3 \\
\gamma^2 |2t|^3 (\eta - 1) & \text{if } |\eta - 1| \geq \sigma_3.
\end{cases} \]
Here
\[
\sigma_3 = \left\{ \frac{|(\lambda^2 - 3\lambda + 3)2\gamma - 2(2 - \lambda)^2|2\eta^2 + (2 - \lambda)^2}{4\lambda^2(3 - \lambda)} \right\}.
\]

Theorem 2.2. Let the function \(f \in \Sigma \) be given by (1.1) be in the class \(\mathcal{M}_\Sigma(\lambda, \gamma, x) \). Then
\[
|a_2| \leq \frac{|\gamma||bx|\sqrt{|bx|}}{\sqrt{|bx^2|((4\lambda^2 - 11\lambda + 9)\gamma b - (2 - \lambda)^24p - aq4(2 - \lambda)^2)}},
\]
and for some \(\eta \in R \),
\[
|a_3 - \eta a_2^2|
\]
\[
\leq \begin{cases}
\frac{|\gamma||bx|}{3(3 - \lambda)} & \text{if } |\eta - 1| \leq \sigma_4 \\
\frac{\gamma^2|bx|^3(\eta - 1)}{((4\lambda^2 - 11\lambda + 9)\gamma b - 4p(2 - \lambda)^2)bx^2 - 4qa(2 - \lambda)^2} & \text{if } |\eta - 1| \geq \sigma_4.
\end{cases}
\]

Here,
\[
\sigma_4 = \left\{ \frac{|(4\lambda^2 - 11\lambda + 9)\gamma b - 4p(2 - \lambda)^2|bx^2 - 4qa(2 - \lambda)^2}{(bx)^23(3 - \lambda)} \right\}.
\]

Proof. Let \(f \in \mathcal{M}_\Sigma(\lambda, \gamma, x) \). be given by Taylor-Maclaurin expansion (1.1). Then for all \(z, w \in \mathbb{U} \) with \(\Phi(0) = \psi(0) = 0, |\Phi(z)| < 1, |\psi(w) < 1 | \) such that
\[
1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda z f'(z) - 1} \right) = \Omega(x, \Phi(z)) + 1 - a
\]
and
\[
1 + \frac{1}{\gamma} \left(\frac{wg'(w) + w^2g''(w)}{(1 - \lambda)w + \lambda wg'(w) - 1} \right) = \Omega(x, \psi(w)) + 1 - a.
\]
Equivalently it can be written as
\[
1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda z f'(z) - 1} \right) = 1 + h_1(x) - a + h_2(x)\Phi(z) + h_3(x)[\Phi(z)]^3 + \ldots
\]
and
\[
1 + \frac{1}{\gamma} \left(\frac{wg'(w) + w^2g''(w)}{(1 - \lambda)w + \lambda wg'(w) - 1} \right) = 1 + h_1(x) - a + h_2(x)\psi(w) + h_3(x)[\psi(w)]^3 + \ldots.
\]
Making use of the inequality \(|\Phi(z)| < 1 \) and \(|\psi(z)| < 1 \), we have
\[
1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda z f'(z) - 1} \right)
= 1 + h_2(x)p_1z + [h_2(x)p_2 + h_3(x)p_1^2]z^2 + \ldots
\]

(2.17)
and
\[
1 + \frac{1}{\gamma} \left(\frac{w g'(w) + w^2 g''(w)}{(1 - \lambda)w + \lambda wg'(w)} - 1 \right)
= 1 + h_2(x)q_1 w + [h_2(x)q_2 + h_3(x)q_1^2]w^2 + \ldots.
\]

(2.18)

Now comparing the like coefficients of (2.17) and (2.18), we have
\[
\frac{2(2 - \lambda)}{\gamma} a_2 = h_2(x)p_1,
\]
(2.19)

\[
\frac{3(3 - \lambda)a_3 - 4\lambda(2 - \lambda)a_2^2}{\gamma} = h_2(x)p_2 + h_3(x)p_1^2,
\]
(2.20)

\[
\frac{-2(2 - \lambda)}{\gamma} a_2 = h_2(x)q_1,
\]
(2.21)

and
\[
\frac{3(3 - \lambda)(2a_2^2 - a_3) - 4\lambda(2 - \lambda)a_2^2}{\gamma} = h_2(x)q_2 + h_3(x)q_1^2.
\]
(2.22)

From (2.19) and (2.21), we can observe that
\[
p_1 = -q_1
\]
(2.23)

and
\[
a_2^2 = \frac{\gamma^2 h_2^3(x)(p_1^2 + q_1^2)}{2(1 + 2\lambda + 6\delta)[h_2(x)]^2 - 2h_3(x)(1 + \lambda + 2\delta)^2}.
\]
(2.24)

Adding (2.20) and (2.22), we get
\[
\frac{2(4\lambda^2 - 11\lambda + 9)}{\gamma} a_2 = h_2(x)(p_2 + q_2) + h_3(x)(p_1^2 + q_1^2).
\]
(2.25)

Substituting (2.24) in (2.25), we have
\[
a_2^2 = \frac{h_2(x)^3(u_2 + v_2)}{2(1 + 2\lambda + 6\delta)[h_2(x)]^2 - 2h_3(x)(1 + \lambda + 2\delta)^2}.
\]
(2.26)

Using (1.3), the above equation yields
\[
|a_2| \leq \frac{|\gamma||bx|\sqrt{|bx|}}{\sqrt{|bx^2|(4\lambda^2 - 11\lambda + 9)\gamma b - (2 - \lambda)^2 4p} - aq(2 - \lambda)^2}.
\]

Similarly, upon subtracting equation (2.22) from the equation (2.20) and in view of (2.23), we obtain
\[
\frac{3(3 - \lambda)a_3 - 3(3 - \lambda)(2a_2^2 - a_3)}{\gamma} = h_2(x)(p_2 - q_2) + h_3(x)(p_1^2 - q_1^2).
\]
Applying (1.3), we deduce that

$$|a_3| \leq |\gamma b| |x| + \frac{\gamma^2 (bx)^2}{3(3 - \lambda)}.$$

For any $\eta \in \mathbb{R}$,

$$a_3 - \eta a_2^2 = \frac{\gamma h_2(x)(p_2 - q_2)}{6(3 - \lambda)} + (1 - \eta) a_2^2.$$

Substituting (2.26) in (2.27), we have

$$a_3 - \eta a_2^2 = \frac{\gamma h_2(x)(p_2 - q_2)}{6(3 - \lambda)} + \left[\Theta(\eta, x) + \frac{1}{6(3 - \lambda)}p_2 + \left(\Theta(\eta, x) - \frac{1}{6(3 - \lambda)}\right)\right],$$

where

$$\Theta(\eta, x) = \frac{\gamma [h_2(x)]^2 (1 - \eta)}{2(4\lambda^2 - 11\lambda + 9)\gamma [h_2(x)]^2 - 8(2 - \lambda)^2 h_3(x)}.$$

Hence in view of (1.3), we conclude that

$$|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|\gamma||h_2(x)||}{3(3 - \lambda)} & 0 \leq |\Theta(\eta, x)| \leq \frac{1}{6(3 - \lambda)} \\
2|\gamma||h_2(x)||\Theta(\eta, x)| & |\Theta(\eta, x)| \geq \frac{1}{6(3 - \lambda)}
\end{cases}$$

which completes the proof of the Theorem (2.2).

For $\lambda = 1$, Theorem 2.2 readily yields the following corollaries:

Corollary 2.3. Let the function $f \in \Sigma$ given by (1.1) be in the class $\mathcal{M}_\Sigma(1, \gamma, x)$. Then for some $\eta \in \mathbb{R}$,

$$|a_3 - \eta a_2^2| \leq \begin{cases}
\frac{|\gamma||b|}{6(3 - \lambda)} & \text{if } |\eta - 1| \leq \sigma_5 \\
\frac{\gamma^2 |b|^3 (\eta - 1)}{|2\gamma b - 4p|^2 b^2 - 4qa} & \text{if } |\eta - 1| \geq \sigma_5.
\end{cases}$$

Here

$$\sigma_5 = \frac{|2\gamma b - 4p|^2 b^2 - 4qa}{6(bx)^2}.$$

In view of Remark 1.1,

Corollary 2.4. Let the function $f \in \Sigma$ given by (1.1) be in the class $\mathcal{M}_\Sigma(\lambda, \gamma, t)$ and for some $\eta \in \mathbb{R}$,
\[|a_3 - \eta a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|2|t|}{3(3 - \lambda)} & \text{if } |\eta - 1| \leq \sigma_6 \\
\gamma^2|2t|^3(\eta - 1) & \text{if } |\eta - 1| \geq \sigma_6.
\end{array} \right.\]

Where

\[\sigma_6 = \frac{|((4\lambda^2 - 11\lambda + 9)2\gamma - 8(2 - \lambda)^2)|2t^2 + 4(2 - \lambda)^2|}{12t^2(3 - \lambda)}.
\]

References

DEPARTMENT OF MATHEMATICS
AUDISAKARA COLLEGE OF ENGINEERING AND TECHNOLOGY
GUDUR 524101, NELLORE DISTRICT
ANDRA PRADESH, INDIA
Email address: soundarkavitha@gmail.com

DEPARTMENT OF MATHEMATICS
THEIVANAI AMMAL COLLEGE FOR WOMEN
VILLUPURAM 605602, TAMILNADU, INDIA
Email address: ksdhanalakshmi@gmail.com

PUDUCHERRY 605501
Email address: yogiyeshvanth07@gmail.com