DEFENSIVE ALLIANCE DIFFERENCE SECURE SETS OF A PATH

SUNITA PRIYA D’SILVA¹, BADEKARA SOORYANARAYANA, AND KUNJARU MITRA

ABSTRACT. Let $G = (V, E)$ be a simple connected graph. A non-empty subset $S$ of $V$ is called a defensive alliance of $G$ if for every $v \in S$, $|N[v] \cap S| \geq |N[v] - S|$. Let $f : V(G) \to \{1, 2, 3, \ldots, |V|\}$ be a bijection. A subset $S \subseteq V$ is called a difference secure set of $G$ with respect to $f$ if for all $u, v \in S$, there is a $w \in S$ such that $|f(u) - f(v)| = f(w)$ if and only if $uv \in E$. A defensive alliance $S$ of $G$ which is also a difference secure set is called defensive alliance difference secure set (ad-set).

In this paper, we initiate the study of various types of ad-sets and compute the minimum cardinality of each set, particularly for paths.

1. INTRODUCTION

All the graph considered in this paper are simple, connected and finite. For a graph $G = (V, E)$, $S$ is a non-empty subset of $V(G)$, $\langle S \rangle$ denotes the subgraph of $G$ induced by $S$ and $\overline{S} = V - S$. Let $a_1$ be the graph property satisfied by atleast one subset $S$ among the varieties of subsets of $V(G)$. Using the $a_1$ graph property 4 different types of sets are obtained and is defined in Table 1:

¹corresponding author

2020 Mathematics Subject Classification. 05C69, 05C76, 05C78.

Key words and phrases. defensive alliances, difference secure sets, defensive alliance difference secure sets.

10313
Table 1. Varieties of sets with \( a_1 \) property

<table>
<thead>
<tr>
<th>Sets</th>
<th>Condition for the sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>( a_1 )-set</td>
<td>( S ) should satisfies the ( a_1 )-property.</td>
</tr>
<tr>
<td>( a_1^* )-set</td>
<td>Both ( S ) and ( \overline{S} ) should satisfies the ( a_1 )-property.</td>
</tr>
<tr>
<td>( A_1 )-set</td>
<td>( S ) should satisfies the ( a_1 )-property and ( \overline{S} ) should not satisfies the ( a_1 )-property.</td>
</tr>
<tr>
<td>( A_1^* )-set</td>
<td>Both ( S ) and ( \overline{S} ) should not satisfies the ( a_1 )-property.</td>
</tr>
</tbody>
</table>

Let \( a_2 \) be one more property satisfied by any subset of varieties of subsets of \( V(G) \). If any subset has to satisfy both \( a_1 \) and \( a_2 \) property then we get \( 4^2 \) varieties of \( a_1a_2 \)-sets of \( G \) as shown in Table 1:

Table 2. Varieties of sets with \( a_1 \) and \( a_2 \) properties

<table>
<thead>
<tr>
<th>( a_1a_2 )-set</th>
<th>( a_1a_2^* )-set</th>
<th>( a_1A_2 )-set</th>
<th>( a_1A_2^* )-set</th>
</tr>
</thead>
<tbody>
<tr>
<td>( a_1^*a_2 )-set</td>
<td>( a_1^<em>a_2^</em> )-set</td>
<td>( a_1^*A_2 )-set</td>
<td>( a_1^<em>A_2^</em> )-set</td>
</tr>
<tr>
<td>( A_1a_2 )-set</td>
<td>( A_1a_2^* )-set</td>
<td>( A_1A_2 )-set</td>
<td>( A_1A_2^* )-set</td>
</tr>
<tr>
<td>( A_1^*a_2 )-set</td>
<td>( A_1^<em>a_2^</em> )-set</td>
<td>( A_1^*A_2 )-set</td>
<td>( A_1^<em>A_2^</em> )-set</td>
</tr>
</tbody>
</table>

Similarly, with \( a_1, a_2 \) and \( a_3 \) properties we will have \( 4^3 \) different types of \( a_1a_2a_3 \)-sets of \( G \). In general, with \( a_1, a_2, a_3, \ldots, a_k \) properties we will get \( 4^k \) different types of \( a_1a_2a_3 \ldots a_k \)-sets of \( G \). The properties are studied for \( 2^n \) subsets of \( V(G) \) of \( G \) having order \( n \). We make the study more meaningful by excluding null set and whole set from the subsets of \( V(G) \). Hence, we study the properties for \( 2^n - 2 \) subsets of \( V(G) \). A \( a_1a_2 \)-set is said to be a minimal \( a_1a_2 \)-set of \( G \) if none of its proper subsets are \( a_1a_2 \)-set of \( G \). The minimum cardinality of a minimal \( a_1a_2 \)-set of \( G \) is called lower \( a_1a_2 \) number and is denoted by \( l_{a_1a_2}(G) \).

Let \( G = (V, E) \) be a graph. If \( v \in V \) and \( S \subseteq V \), then \( N(v) = \{ u \in V : uv \in E \} \), \( N[v] = N(v) \cup \{ v \} \), \( N(S) = \bigcup_{v \in S} N(v) \) and \( N[S] = N(S) \cup S \). A defensive alliance is a subset \( S \) of \( V \) such that \( v \in S \) implies \( |N[v] \cap S| \geq |N[v] - S| \). The vertices of \( N[v] - S \) as attackers of \( v \) and those of \( N[v] \cap S \) as defenders of \( v \). Thus, for any \( v \) in a defensive alliance, there are at least as many defenders as there are attackers, and any attack on a single vertex can be defended. The studies on defensive alliance are included in [2,3,5]. We recall the following for the immediate reference:
**Theorem 1.1.** [5] The subgraph induced by a minimal defensive alliance set of a connected graph $G$ is connected.

**Theorem 1.2.** [5] For any graph $G$, $a(G) = 1$ if and only if there exists a vertex $v \in V$ such that $\deg(v) \leq 1$.

**Remark 1.1.** For a path $P_n$, any vertex $v_i \in V(G)$ with $\deg(v_i) = 2$ and a subset $S \subseteq V(G)$, then $S = \{v_i\}$ is not defensive alliance.

A graph $G$ is a difference graph if there is a bijection $f$ from $V$ to a set of positive integers $S$ such that $xy \in E$ if and only if $|f(x) - f(y)| \in S$. The more research work on difference graphs can be found in [1, 4, 7]. Now we define difference secure number as follows: Let $f : V(G) \rightarrow \{1, 2, 3, \ldots, |V|\}$ be a bijection. A subset $S \subseteq V$ is called a difference secure set of $G$ with respect to $f$ if for all $u, v \in S$, there is a $w \in S$ such that $|f(u) - f(v)| = f(w)$ if and only if $uv \in E$. Among all such $f$ the maximum cardinality of a difference secure set is called difference secure number of $G$ and it is denoted by $DSN(G)$.

B. Sooryanarayana et.al in [6] introduced the neighbourhood resolving sets of a graph and studied various types of nr-set. Likewise, for a graph $G$ we define ad-set if $S$ is defensive alliance difference secure set. In alliances the number of defendable members who are able to defend immediately is decided by the codes assigned to them. The difference of the codes assigned to them also occurs if the members of the alliance are neighbours and those members will always be able to defend without delay in time. If not, codes does not exist and members do not defend.

**Remark 1.2.** For any graph $G = (V, E)$, the singleton subset $S = \{v\}, v \in V$ is always difference secure set.

**Remark 1.3.** For a connected graph $G$ with order $n \geq 2$, the subset $S \subseteq V(G)$ with $|S| = 2$ is always a difference secure set.

**Proof.** Let $S = \{v_1, v_2\}$ be a subset of $V(G)$ and $f : V \rightarrow \{1, 2, 3, \ldots, n\}$ be the labeling function. We have two possibilities, either $v_1$ is adjacent to $v_2$ or not. If $v_1$ is adjacent to $v_2$, then take $f(v_1) = 2f(v_2)$ or else take $f(v_1) \neq 2f(v_2)$. In both the ways $S$ is a difference secure set. □

**Remark 1.4.** For any $a > 0$, the difference secure set $S \subseteq V(G)$ for any triangle free graph $G(n \geq 3)$, cannot contain a subset with labels $\{a, 2a, 3a\}$. 
Proof. If possible, let \( f(v_i) = a, f(v_j) = 2a \) and \( f(v_k) = 3a \) for some \( v_i, v_j, v_k \in S \), then \( \{v_i, v_j, v_k\} \cong C_3 \), a contradiction to the fact that \( G \) is a triangle free graph. \( \square \)

Remark 1.5. For any path \( P_n \) with difference secure set \( S \), if \( d \in f(S) \), then the set \( \{x, x+d, x+2d\} \not\subseteq f(S) \), for \( x > d \).

Proof. Let \( f: V(P_n) \to \{1, 2, 3, \ldots, n\} \) be the labeling function and \( S \subset V(P_n) \). Consider the subset \( \{v_i, v_j, v_k, v_l\} \subset S \). Let \( f(v_i) = x, f(v_j) = x + d, f(v_k) = x + 2d, f(v_l) = d \). Suppose, if the set \( \{x, x + d, x + 2d\} \subseteq f(S) \), then \( |f(v_j) - f(v_i)| = d = f(v_l) = |f(v_k) - f(v_j)| \Rightarrow \) the vertices \( v_i, v_k, v_l \) are adjacent to \( v_j \); a contradiction to the fact that \( \deg(v_j) \leq 2 \) in \( P_n \). \( \square \)

Theorem 1.3. \[8\] For a path \( P_n \) of order \( n \), \( DSN(P_n) = \lceil \frac{n}{2} \rceil + 1 \).

Theorem 1.4. \[8\] For \( n \geq 11 \), the graph \( P_n \) cannot have both sets \( S \) and \( \overline{S} \) as difference secure simultaneously.

Observation 1.5. For a graph \( P_n \), \( 2 \leq n \leq 10 \), there exits a set \( S \) for which both \( S \) and \( \overline{S} \) are difference secure.

2. \( ad \)-sets of Dimension One

Theorem 2.1. For any integer \( n \), \( l_{ad}(G) = l_{a^*d}(G) = 1 \) if, and only if, \( \delta(G) = 1 \).

Proof. Let \( S \) be a subset of \( V(G) \). From Remark 1.2, the singleton set is always difference secure set and hence a \( d \)-set. From Theorem 1.2, \( S = \{v\} \) is a defensive alliance whenever \( \deg(v) = 1 \). Then \( \overline{S} \) is a set of remaining \( n - 1 \) vertices also form a defensive alliance. The minimum cardinality of minimal \( a \)-set, \( a^* \)-set is one. Hence, \( l_{ad}(G) = l_{a^*d}(G) = 1 \). On the otherhand, let \( G \) be a graph with \( l_{ad}(G) = l_{a^*d}(G) = 1 \). Then there exist singleton set \( S = \{v\} \) which satisfies \( a \)-set, \( a^* \)-set and \( d \)-set properties. If \( S \) is defensive alliance then \( \{v\} \) must be a pendant vertex. Hence, \( \delta(G) = 1 \). \( \square \)

Theorem 2.2. For any integer \( n \),

\[
l_{aD}(G) = l_{a^*D}(G) = \begin{cases} 
\text{does not exist}, & \text{for } n = 2 \\
1, & \text{for } n \geq 3 
\end{cases}
\]

if, and only if, \( G \) is a triangle free graph with \( \delta(G) = 1 \).
Proof. Let \( G \) be a triangle free graph with \( \delta(G) = 1 \) and \( S \subset V(G) \). From Theorem 2.1, we proved that for any graph \( G \), \( S = \{v_1\} \), where \( v_1 \) is a pendant vertex is a \( a \)-set and \( a^* \)-set. Consider a labeling function \( f : V(G) \to \{1, 2, 3, \ldots, n\} \). For \( n = 2 \), \( S = \{v_1\} \) with \( f(v_1) = 1 \) and \( f(v_2) = 2 \). For \( n = 3 \), \( G \cong P_3 \). Take \( S = \{v_1\} \) with \( f(v_1) = 1 \) and \( f(S) = \{2, 3\} \). For \( n \geq 4 \), if \( S = \{v_1\} \), then from Remark 1.4 and Remark 1.5, \( C_3 \subseteq \langle S \rangle \). Therefore, \( S \) is not a difference secure set since \( G \) is a triangle free graph. Hence, \( S \) is a \( D \)-set. Therefore, \( l_{aD}(G) = l_{a^*D}(G) = 1 \).

Conversely, let \( G \) be a graph with \( l_{aD}(G) = l_{a^*D}(G) = 1 \). Then there exist singleton set \( S = \{v\} \) which is a \( a \)-set, \( a^* \)-set and \( D \)-set. If \( S \) is a defensive alliance then \( \{v\} \) must be a pendant vertex. Hence, \( \delta(G) = 1 \). Since \( |S| = n - 1 \), it will contain a labels of the form \( \{a, 2a, 3a\} \) for any \( a > 0 \). As \( S \) is not a difference secure set, the vertices of \( \langle S \rangle \) cannot be labeled \( \{a, 2a, 3a\} \) for any \( a > 0 \). This implies \( G \) must be a triangle free graph. \( \square \)

3. \( ad \)-sets of a Path

From Theorem 2.1 and Theorem 2.2, the path \( P_n \) is a triangle free graph and \( \delta(P_n) = 1 \). Hence, we have the following corollary:

**Corollary 3.1.** For any integer \( n \), \( l_{ad}(P_n) = l_{a^*d}(P_n) = l_{aD}(P_n) = l_{a^*D}(P_n) = 1 \).

**Theorem 3.1.** For integer \( n \),

\[
l_{a^*d}(P_n) = l_{a^*d^*}(P_n) = \begin{cases} 
1, & \text{for } 2 \leq n \leq 5 \\
\left\lfloor \frac{n}{2} \right\rfloor - 1, & \text{for } 6 \leq n \leq 8 \\
\left\lfloor \frac{n}{9} \right\rfloor, & \text{for } 9 \leq n \leq 10 \\
\text{does not exist}, & \text{for } n \geq 11.
\end{cases}
\]

**Proof.** From Theorem 2.1, minimum cardinality of \( a \)-set, \( a^* \)-set is one. Consider the labeling function \( f : V(P_n) \to \{1, 2, 3, \ldots, n\} \) and \( S \subset V(P_n) \). When \( 2 \leq n \leq 5 \), from Remark 1.2 the set \( S = \{v_1\} \) is difference secure set. Consider \( f(S) = \{2\} \), \( f(S) = \{1, 2\} \), \( f(S) = \{1, 2, 4\} \) and \( f(S) = \{4, 2, 5, 3\} \) for which \( S \) are difference secure for \( n = 2, 3, 4, 5 \) respectively. We also observe that, as \( v_1 \) is an end vertex of \( P_n \), \( S \) is a \( ad^* \)-set and \( a^*d^* \)-set. Also, \( S \) is a minimal set and hence, \( l_{a^*d^*}(P_n) = l_{a^*d^*}(P_n) = 1 \).

When \( 6 \leq n \leq 8 \), \( S = \{v_1\} \) with \( f(v_1) \neq 2 \). Then \( S \) will contain vertices with labels \( \{1, 2, 3\} \) or \( \{2, 4, 6\} \). By Remark 1.4, \( S \) is not a difference secure set. Also, if \( S = \{v_1\} \) with \( f(v_1) = 2 \), then \( S \) will contain vertices with labels \( \{1, 3, 4, 5, 6\} \). This
implies from Remark 1.5, \( \overline{S} \) is not a difference secure set. Therefore, for \( n \geq 6 \), the singleton set is not \( d^* \)-set. So, we take \( |S| \geq 2 \). Also, from Theorem 1.3, we have \( DSN(P_n) = \lceil \frac{n}{2} \rceil + 1 \). If \( |S| < \lceil \frac{n}{2} \rceil - 1 \), then \( |\overline{S}| \geq \lceil \frac{n}{2} \rceil + 1 \). Hence, \( \overline{S} \) cannot become a difference secure set. Therefore, \( \lceil \frac{n}{2} \rceil - 1 \leq |S| \leq \lceil \frac{n}{2} \rceil + 1 \). When \( n = 6,7 \), by Remark 1.3 the subsets \( S_1 = \{ v_1, v_6 \} \) and \( S_2 = \{ v_2, v_3 \} \) respectively, are difference secure. We also observe that the subsets \( f(\overline{S}_1) = \{ 1,4,3,6 \} \) and \( f(\overline{S}_2) = \{ 5,4,7,3,6 \} \) are difference secure. For \( P_8 \), consider \( S = \{ v_1, v_7, v_8 \} \) with \( f(v_1) = 5, f(v_7) = 1, f(v_8) = 2 \) and \( \overline{S} = \{ v_2, v_3, v_4, v_5, v_6 \} \) with \( f(v_2) = 8, f(v_3) = 4, f(v_4) = 7, f(v_5) = 3 \) and \( f(v_6) = 6 \). From Theorem 1.2 and Remark 1.1, \( S \) is an \( a \)-set and \( a^* \)-set. Hence, \( l_{ad^*}(P_n) = l_{a^*d^*}(P_n) = \lceil \frac{n}{2} \rceil - 1 \).

When \( n = 9,10 \), the sets \( S_1 = \{ v_2, v_3, v_4, v_5 \} \) with \( f(S_1) = \{ 2,1,9,8 \} \) and \( S_2 = \{ v_1, v_2, v_3, v_4, v_5 \} \) with \( f(S_2) = \{ 5,10,9,1,2 \} \) respectively, are difference secure. Simultaneously, the subsets \( \overline{S}_1 = \{ v_1,v_6,v_7,v_8,v_9 \} \) with \( f(\overline{S}_1) = \{ 5,4,7,3,6 \} \) and \( \overline{S}_2 = \{ v_6,v_7,v_8,v_9,v_{10} \} \) with \( f(\overline{S}_2) = \{ 6,3,7,4,8 \} \) will also becomes difference secure. Since \( |N[S_1] \cap S_1| \geq |N[S_1] - S_1| \) and \( |N[S_2] \cap S_2| \geq |N[S_2] - S_2| \) holds for \( S_1 \) and \( S_2 \), they are \( a \)-sets. Also, as the subsets \( \overline{S}_1 \) and \( \overline{S}_2 \) hold \( |N[\overline{S}_1] \cap \overline{S}_1| \geq |N[\overline{S}_1] - \overline{S}_1| \) and \( |N[\overline{S}_2] \cap \overline{S}_2| \geq |N[\overline{S}_2] - \overline{S}_2| \), \( \overline{S}_1 \) and \( \overline{S}_2 \) are \( a^* \)-sets. Hence, \( l_{ad^*}(P_n) = l_{a^*d^*}(P_n) = \lceil \frac{n}{2} \rceil \). When \( n \geq 11 \), by Theorem 1.4, \( l_{ad^*}(P_n) \) does not exist.

Theorem 3.2. For any path \( P_n \), \( l_{Ad^*}(P_n) = \begin{cases} 
    \text{does not exist}, & \text{for } n = 2 \\
    2, & \text{for } n = 3 \\
    3, & \text{for } n \geq 4.
\end{cases} \)

Proof. For any singleton subset \( S = \{ v \} \) of \( V(P_n) \), if \( v \) is a pendant vertex, then both \( S \) and \( \overline{S} \) will be defensive alliance, otherwise \( S \) itself will not be defensive alliance. Hence, \( S \) is not a \( A \)-set. It is obvious from Theorem 1.2 that \( P_2 \) does not have a \( A \)-set. For \( n = 3 \), the set \( S = \{ v_1,v_3 \} \) is a defensive alliance, where as \( \overline{S} = \{ v_2 \} \) is not defensive alliance. Hence, \( S \) is a \( A \)-set. Also, for a labeling function \( f : V(P_n) \to \{ 1,2,3,\ldots,n \} \), take \( f(v_1) = 1, f(v_3) = 3 \) and \( f(v_2) = 2 \). Then \( S = \{ v_1,v_3 \} \) is a \( d \)-set. Therefore, \( l_{Ad}(P_3) = 2 \).

Consider the set \( S = \{ v_i,v_j \}, 1 \leq j \leq n, \) with \( v_i \) as one of the end vertex of \( P_n \). If \( v_j \) is adjacent to \( v_i \), then both \( S \) and \( \overline{S} \) will be defensive alliance. And if \( v_j \) is not adjacent to \( v_i \) then \( S \) itself is not defensive alliance. Hence, we take \( |S| > 2 \). Let \( S = \{ v_i,v_j,v_k \}, 1 \leq j,k \leq n, \) with \( v_i \) as end vertex. We cannot have \( \langle S \rangle \) disconnected, otherwise \( S \) will not be a defensive alliance. So, to have \( S \) as a
defensive alliance and $\overline{S}$ as a non-defensive alliance, take $v_i$ not adjacent to $v_j$ and $v_k$, also $v_j$ and $v_l$ adjacent to each other. Now define a labeling function $f: V \rightarrow \{1, 2, 3, \ldots, n\}$ as follows: $f(v_j) = 2f(v_k)$ where $+ f(v_k) = a \in \{1, 2, 3, \ldots, \lfloor \frac{n}{2} \rfloor\}$ and $f(v_i) \not\equiv 0 (mod a)$. Hence, $S$ is a $Ad$-set. Therefore, $l_{Ad}(P_n) = 3$. □

**Theorem 3.3.** For any path $P_n$,

$$l_{Ad^*}(P_n) = \begin{cases} 2, & \text{for } n = 3 \\ 3, & \text{for } 4 \leq n \leq 8 \\ \text{does not exist, } & \text{for } n = 2 \text{ and } n \geq 9. \end{cases}$$

**Proof.** It is obvious that $P_2$ does not have a $A$-set. Let $S \subset V(P_n)$. For $P_3$, the subset $S = \{v_1, v_3\}$ is a $A$-set. But for a path $P_n$, $n \geq 4$, the set $S$ is the minimal set $A$-set if it is of the form $\{v_1, v_3, v_4\}$ or $\{v_{n-3}, v_{n-2}, v_n\}$. Now if this set $S$ has to be a $d^*$-set then there should exit some labeling function $f$ such that both $S$ and $\overline{S}$ are difference secure. Define $f: V(P_n) \rightarrow \{1, 2, 3, \ldots, n\}$ as follows:

For $n = 3$, $f(S) = \{1, 3\}$ and $f(\overline{S}) = \{2\}$. Here, $S$ is a $A$-set and $d^*$-set. Hence, $l_{Ad^*}(P_3) = 2$. We consider for different $n$ the labeling where both $S$ and $\overline{S}$ are difference secure. In the set $S = \{v_1, v_3, v_4\}$ are adjacent so that we can label $f(v_3) = 2f(v_4)$ and the pendant vertex $v_1$ can be chosen such that $f(v_1) \neq 2f(v_3) = 2f(v_4)$. Then $S$ is difference secure. Similarly, the set $\{v_{n-3}, v_{n-2}, v_n\}$ is a difference secure. For the above set $S$ and for each $4 \leq n \leq 8$, label $\overline{S}$ as $f(S) = \{1\}$, $f(\overline{S}) = \{1, 5\}$, $f(S) = \{5, 1, 2\}$, $f(\overline{S}) = \{5, 3, 7, 4\}$ and $f(S) = \{5, 6, 3, 7, 4\}$. We observe that the above $\overline{S}$ are difference secure. Hence, $S$ is a $d^*$-set. Therefore, $l_{Ad^*}(P_n) = 3$.

Consider $S = \{v_2, v_3, v_4, v_5\}$ with $f(S) = \{2, 1, 9, 8\}$ for $n = 9$. Then we get $\overline{S} = \{v_1, v_6, v_7, v_8, v_9\}$ with $f(\overline{S}) = \{5, 4, 7, 3, 6\}$. Similarly, for $n = 10$, consider $S = \{v_1, v_2, v_3, v_4, v_5\}$ with $f(S) = \{5, 10, 9, 1, 2\}$ and $\overline{S} = \{v_6, v_7, v_8, v_9, v_{10}\}$ with $f(\overline{S}) = \{6, 3, 7, 4, 8\}$. This set $S$ is a unique $d^*$-set but not a $A$-set (since both $S$ and $\overline{S}$ are defensive alliance). From Theorem 1.4, $P_n, n \geq 11$ has no $d^*$-set. □

**Theorem 3.4.** For any path $P_n$, $l_{AD}(P_n) = \begin{cases} \text{does not exist, } & \text{for } 2 \leq n \leq 7 \\ 3, & \text{for } n \geq 8. \end{cases}$

**Proof.** For $n = 2$, it is trivial that $l_{AD}(P_2)$ does not exist. Let $f: V \rightarrow \{1, 2, 3, \ldots, n\}$ be the labeling function and $S$ be a subset of $V(P_n)$. For $n = 3$, the set $S = \{v_1, v_3\}$ is a minimal $A$-set, but there exist a labeling function with $f(S) = \{1, 3\}$ and $f(\overline{S}) = \{2\}$ where both $S$ and $\overline{S}$ becomes difference secure. Hence, $S$ fails to be
adjacent vertices. Then obviously have Theorem 3.5. | 

Theorem 3.5. For any integer \( n \geq 4 \), \( l_{A^d}(P_n) = 2 \).

Proof. Let \( S \) be a subset of \( V(P_n) \). We know that singleton set \( S = \{ v \} \), where \( v \) is a pendant vertex, is always a defensive alliance. Also, if \( v \) is not a pendant vertex, then \( S \) becomes a defensive alliance. Hence, \( S \) is not a \( A^* \)-set. Therefore, we must have \( |S| \geq 2 \). Let \( S = \{ v_{i-1}, v_{i+1} \} \) for \( 2 \leq i \leq n - 1 \) contains one pair of non-adjacent vertices. Then obviously \( S \) will contain at least one pair of non-adjacent vertices. From Remark 1.1, both \( S \) and \( S^* \) are \( A^* \)-sets. Let \( f : V \to \{ 1, 2, 3, \ldots, n \} \) be a labeling function. Suppose if \( f(v_{i-1}) = 1 \) and \( f(v_{i+1}) = 3 \), then \( S \) will be difference secure (since \( |f(v_{i-1}) - f(v_{i+1})| = 2 \neq S \). Hence, \( S \) is both defensive alliance and difference secure. Therefore, \( l_{A^d}(P_n) = 2 \). □

Theorem 3.6. For any path \( P_n \),

\[
l_{A^d}(P_n) = \begin{cases} 
2, & \text{for } n = 4, 5 \\
3, & \text{for } n = 6, 7, 8 \\
does \text{not exist}, & \text{for } n = 2, 3 \text{ and } n \geq 9.
\end{cases}
\]

Proof. Let \( f : V \to \{ 1, 2, 3, \ldots, n \} \) be a labeling function and \( S \subset V(P_n) \). Consider the set \( S \) and \( S^* \) which contains at least one vertex other than pendant vertex which is not adjacent to other vertices. Clearly, \( S \) is a \( A^* \)-set. From Remark 1.1, for \( P_2 \) and \( P_3 \) there exists no set \( S \) which is a \( A^* \)-set. Therefore, \( l_{A^d}(P_2) \) and \( l_{A^d}(P_3) \) does not exist.

We take a set \( S \) which is a \( A^* \)-set and define the labeling \( f \) so that \( S \) is also a \( d^* \)-set as below:

Case 1: For \( n = 4, 5 \), we take,
(i) $S = \{v_1, v_3\}$ with labeling $f(v_1) = 1$, $f(v_2) = 4$, $f(v_3) = 2$ and $f(v_4) = 3$, for $n = 4$.
(ii) $S = \{v_1, v_3\}$ with labeling $f(v_1) = 1$, $f(v_3) = 3$, $f(v_2) = 5$, $f(v_4) = 2$ and $f(v_5) = 4$, for $n = 5$.

Hence, $l_{A^*d^*}(P_4) = l_{A^*d^*}(P_5) = 2$.

From Theorem 1.3, for $n > 6$, if $|S| = 2$ then, $\overline{S}$ is not a difference secure set. When $n = 6$, for the set $\{v_i, v_{i+2}\}$, $1 \leq i \leq n - 2$, $\overline{S}$ is not a difference secure set. Hence, we take $|S| > 2$ for the following case.

Case 2: For $6 \leq n \leq 8$, we define the labeling as follows:

(i) $S = \{v_2, v_4, v_5\}$ with labeling $f(v_2) = 6$, $f(v_4) = 1$, $f(v_5) = 2$, $f(v_1) = 3$, $f(v_3) = 4$ and $f(v_6) = 5$, when $n = 6$.
(ii) $S = \{v_2, v_4, v_5\}$ with labeling $f(v_2) = 7$, $f(v_4) = 1$, $f(v_5) = 2$, $f(v_1) = 5$, $f(v_3) = 4$, $f(v_6) = 3$ and $f(v_7) = 6$, when $n = 7$.
(iii) $S = \{v_1, v_2, v_4\}$ with labeling $f(v_1) = 1$, $f(v_2) = 2$, $f(v_4) = 8$, $f(v_3) = 5$, $f(v_5) = 6$, $f(v_6) = 3$, $f(v_7) = 7$ and $f(v_8) = 4$, when $n = 8$.

Therefore, $l_{A^*d^*}(P_6) = l_{A^*d^*}(P_7) = l_{A^*d^*}(P_8) = 3$.

Case 3: For $n \geq 9$,

When $n = 9, 10$, there exist unique set $S$ is a $d^*$-set but fails to be a $A^*$-set. The only $d^*$-set $S$ is shown below:

(i) When $n = 9$, we get a unique set $S = \{v_1, v_6, v_7, v_8, v_9\}$ with labeling $f(v_1) = 5$, $f(v_6) = 4$, $f(v_7) = 7$, $f(v_8) = 3$, $f(v_9) = 6$, $f(v_2) = 2$, $f(v_3) = 1$, $f(v_4) = 9$ and $f(v_5) = 8$.
(ii) For $n = 10$, we get a unique set $S = \{v_1, v_7, v_8, v_9, v_{10}\}$ with labeling $f(v_1) = 7$, $f(v_7) = 5$, $f(v_8) = 8$, $f(v_9) = 3$, $f(v_{10}) = 6$, $f(v_2) = 9$, $f(v_3) = 10$, $f(v_4) = 1$, $f(v_5) = 2$ and $f(v_6) = 4$.

Also, by Theorem 1.4, for $n \geq 11$, $d^*$-set does not exist for $P_n$. Hence, $n \geq 9$, $l_{A^*d^*}(P_n)$ does not exist.

Theorem 3.7. For any path $P_n$, $l_{A^*D}(P_n) = \begin{cases} \text{does not exist}, & \text{for } n = 2, 3 \\ 2 & \text{for } n \geq 4. \end{cases}$

Proof. The set $S = \{v_i, v_{i+2}\}$, $1 \leq i \leq n - 2$, is a minimum subset of $V(P_n)$ which is a $A^*$-set (since $S$ and $\overline{S}$ are not a defensive alliance). For $n = 2, 3$, we cannot have any $A^*$-set. Therefore, $l_{A^*D}(P_2)$ and $l_{A^*D}(P_3)$ does not exist.
Consider a labeling function $f : V \to \{1, 2, 3, \ldots, n\}$. For $P_n$ to have a $D$-set, there must exist at least one difference secure set $S$, for which $S$ is not a difference secure set. From Remark 1.3, the set $S = \{v_2, v_4\}$ is difference secure. For $n \geq 4$, $S$ is not difference secure. When $n = 4, 5$, we label $S$ as $f(S) = \{2, 4\}$, $f(S) = \{2, 4, 5\}$ respectively, which is clearly not difference secure. When $n = 6, 7$, there exist no labeling for $S$ which is difference secure and for $n \geq 8, S = \{v_2, v_4\}$, we get $|S| > \left\lceil \frac{n}{2} \right\rceil + 1$ which implies from Theorem 1.3, $S$ is not a difference secure set. Hence, $l_{A*D}(P_n) = 2$. □

Lemma 3.1. For any path $P_n$ of order $n$, $D^*$-set does not exist.

Proof. The maximal difference secure set for a path $P_n$ is $\left\lceil \frac{n}{2} \right\rceil + 1$. Hence, for $n$ up to $\left\lceil \frac{n}{2} \right\rceil + 1$ there exist at least one set $S$ which is difference secure. When $n > \left\lceil \frac{n}{2} \right\rceil + 1$, we get $S$ as difference secure. Therefore, both $S$ and $\overline{S}$ cannot be difference secure sets simultaneously. Hence, $P_n$ does not have $D^*$-set. □

From Lemma 3.1 we have the following Theorem.

Theorem 3.8. For integer $n \geq 3$, $l_{aD'}(P_n) = l_{a*D'}(P_n) = l_{A*D'}(P_n) = l_{A'*D'}(P_n)$ does not exist.

Acknowledgement

The authors wish to express sincere thanks to the anonymous referees for their careful reading of the manuscript and helpful suggestions.

References


Department of Mathematics
Sahyadri College of Engineering and Management
Affiliated to Visvesvaraya Technological University
Mangalore, Karnataka 575007, India
Email address: sunita.math@sahyadri.edu.in

Department of Mathematics
Dr. Ambedkar Institute of Technology
Affiliated to Visvesvaraya Technological University
Bangalore 560056, India
Email address: dr_bsnrao@dr-ait.org

Department of Mathematics
P.A. College of Engineering
Affiliated to Visvesvaraya Technological University Belagavi
Mangaluru- 574153, India
Email address: mitrakunjaru@gmail.com