SHORTEST PATH ALGORITHMS W.R.T. SINGLE VALUED NEUTROSOPHIC GRAPHS

Y. SRINIVASA RAO¹ AND D. VENKATA LAKSHMI

ABSTRACT. The minimal spanning tree (MST) algorithms by using the edges weights are elderly presented mainly by Prim's and Kruskal's algorithms. In this article we use the triplet weights for the neutrosophic edges by using the different score functions we angry with the new model algorithms namely neutrosophic Prim's algorithm and neutrosophic kruskal's algorithm. Further, we use the different score functions we get the satisfied results based on the algorithms.

1. INTRODUCTION

The idea of Neutrosophic technique was derived by Smarandache [17]. These can abduction the ordinary circumstance of both deception as well as ambiguity that endure in genuine existence plot. The concept of the triplet was derived by using fuzzy set and intuitionistic fuzzy set. The triplet contains truth, indeterminacy and false numbers lies between 0 and 1. By using Fuzzy of type 1, intuitionistic fuzzy and conventional set is NS. In NS there are three components called truth assign number indicate T and indeterminate assign number I, false assign number indicate F, separately. Furthermore, in real life problems we can apply NSs for the reference see [18]. Next they got idea of SVNS. By using this SVNSs properties described by Wang et al. [25]. In order to deal with uncertainty, fuzzy concept

¹corresponding author

2020 Mathematics Subject Classification. 05C10.

Key words and phrases. Minimal spanning tree, Prim's algorithm, Kruskal's algorithm and neutrosophic weighted edges.
proposed by Zadeh [28]. A rank method on IVIFSs with rank method studied by
Nayagam et al. [12] and Mitchell [8]. The generalizations of score function on
IVIFSs introduced by Garg [3]. The weighted accuracy function and score function
in IVIFSs studied by Xu [26] and Liu and Xie [7] the IVIFSs. There different types
of algorithms for finding the minimal sapping tree see the reference [14], in that
mainly Prim’s algorithm and Kruskal’s algorithm. The number of types of spanning
tree problems contain to residential through a lot of researchers with assign the
weights to edges are not accurate in that an uncertainty is there for that see the
references [2,4,5,6,9,10,11,13,14,23,24,27].

In this manuscript the main aim is to find minimal spanning tree from NSCWG
by using algorithms like Prim’s and Kruskal’s with different score functions.

2. Preliminaries

The authors are research down by the some results based on the neutrosophic
theory [1,15,16,17,19,20,21,22].

Definition 2.1. Neutrosophic set contains the triplet numbers which are lies between
the 0 and 1. The summation of these three values present between the 0 and 3.

Example 1. \((0.2, 0.5, 0.6)\) is the neutrosophic set and the sum also shows \(0 \leq 1.3 \leq 3\).

Definition 2.2. The single valued neutrosophic sets is denoted as following
\(A = (T, I, F)\) and defined as the functions \(0 \leq T \leq 1\) is the truth number \(0 \leq I \leq 1\) is
the indeterminacy number and \(0 \leq F \leq 1\) falsity number. The \(T, I\) and \(F\) satisfies the
condition \(0 \leq T + I + F \leq 3\).

Definition 2.3. A single valued neutrosophic graph (SVN-graph) with \(N_V\) is explained
by to be a two of a kind \((P, Q)\) everywhere \([0, 1]\) indicate the interval \(B\). The functions
\(T_P : N_V \rightarrow B, I_P : N_V \rightarrow B\) and \(F_P : N_V \rightarrow B\) and \(0 \leq T_P + I_P + F_P \leq 3\) for all
vertices in \(N_V\). Further, The functions \(T_Q : N_V \times N_V \rightarrow B, I_Q : N_V \times N_V \rightarrow B\) and
\(F_Q : N_V \times N_V \rightarrow B\) are explained by \(T_Q(a_i, a_j) \leq \min[T_Q(a_i), T_Q(a_j)], I_Q(a_i, a_j) \geq
\max[I_Q(a_i), I_Q(a_j)]\) and \(F_Q(a_i, a_j) \geq \max[F_Q(a_i), F_Q(a_j)]\) with the condition \(0 \leq
T_B(a_i, a_j) + I_B(a_i, a_j) + F_B(a_i, a_j) \leq 3\) for all \((a_i, a_j) \in E\).

Definition 2.4. Let \(A = (T, I, F)\) be a SVNs. Then a score function \(S\) is explained
by \(S_{ZHANG}(A) = \frac{(2+T-I-F)}{3}\), where \(T, I\) and \(F\) corresponds to the truth number,
indeterminacy number and falsity number lies between 0 and 1.
3. MST algorithm of neutrosophic weighted graphs

This segment, an innovative description of minimum spanning tree algorithms come within reach of new technique presented by using neutrosophic graph theory with edge weight. In the subsequent, we put forward MST algorithm, with step by steps process given below:

We discuss all neutrosophic graphs are connected with n vertices.

Minimal spanning tree by using Primes algorithm:

Input: Neutrosophic weighted graph.

Output: MST from the given neutrosophic weighted graph.

Neutrosophic Prim’s algorithms:

Step:1 Compute the Adjacency matrix of the given neutrosophic graph.

Step:2 With help of the score function change the adjacency matrix to assign the scores of the each edge.

Step:3 Staring from any arbitrary vertex \(v_i \), \((i \neq j = 1, 2, \cdots n) \) and connect it to its nearest neighbor vertex (that is to be vertex which has the smallest weight) say, \(v_j \) \((i \neq j = 1, 2, \cdots n) \). Now consider the edge \(\{ v_i, v_j \} \) and connect it to its closest neighbor (that is to a vertex other than \(v_i \) and \(v_j \), that has the smallest weight among all entities) without forming loop. Let this vertex be \(v_k \) say.

Step:4 start from the vertex \(v_k \) and repeat the process of step:3. Terminate the process after all n vertices connected with n-1 edges. These n-1 edges forms a minimal neutrosophic spanning tree.

Numerical example:

The following graph is the given neutrosophic connected weighted graph G.

Weights of the given NCWG are given in the table form,
Edges	End vertices	weight of the edges
e_1 | v_1v_4 | $(0.4, 0.5, 0.8)$
e_2 | v_1v_2 | $(0.2, 0.4, 0.6)$
e_3 | v_2v_3 | $(0.2, 0.4, 0.3)$
e_4 | v_3v_4 | $(0.2, 0.7, 0.9)$
e_5 | v_1v_3 | $(0.7, 0.2, 0.4)$
e_6 | v_2v_4 | $(0.6, 0.3, 0.4)$
e_7 | v_4v_5 | $(0.8, 0.1, 0.2)$
e_8 | v_3v_5 | $(0.5, 0.3, 0.4)$

Now according to the step 1 process we construct the adjacency matrix of the given NSCWG. The adjacency matrix of the given neutrosophic connected weighted graph is:

$$
\begin{bmatrix}
0 & (0.2, 0.4, 0.6) & (0.7, 0.2, 0.4) & (0.4, 0.5, 0.8) & 0 \\
(0.2, 0.4, 0.6) & 0 & (0.2, 0.4, 0.3) & (0.6, 0.3, 0.4) & 0 \\
(0.7, 0.2, 0.4) & (0.2, 0.4, 0.3) & 0 & (0.2, 0.7, 0.9) & (0.5, 0.3, 0.4) \\
(0.4, 0.5, 0.8) & (0.6, 0.3, 0.4) & (0.2, 0.7, 0.9) & 0 & (0.8, 0.1, 0.2) \\
0 & 0 & (0.5, 0.3, 0.4) & (0.8, 0.1, 0.2) & 0
\end{bmatrix}
$$

According to the Step 2 the score matrix as follows: By using the score function, the adjacency matrix is converting to the following matrix:

$$
\begin{bmatrix}
0 & 0.4 & 0.7 & 0.367 & 0 \\
0.4 & 0 & 0.5 & 0.633 & 0 \\
0.7 & 0.5 & 0 & 0.2 & 0.6 \\
0.367 & 0.633 & 0.2 & 0 & 0.833 \\
0 & 0 & 0.6 & 0.833 & 0
\end{bmatrix}
$$

Now, consider step 3 the arbitrary vertex is v_1 and connect it to its nearest neighbor vertex which has smallest weight is v_4 with the weight 0.367.
Next, consider the two end vertices on the edge \(\{v_1, v_4\} \) and the nearest neighbor vertex is \(v_2 \) add to the edge \(\{v_1, v_2\} \) at \(v_1 \).

Now, consider the vertices \(\{v_1, v_2, v_4\} \), the nearest vertex with the small weight is \(v_3 \) add the vertex to the vertex sets and edge \(\{v_4, v_3\} \) the new vertex set contains 4 vertices, i.e., \(\{v_1, v_2, v_3, v_4\} \).

We have 4 vertices now we consider the vertex set \(\{v_1, v_2, v_3, v_4\} \), repeat the same process we get nearest vertex having smallest weight is not visited already is \(v_5 \), the new vertex set is \(\{v_1, v_2, v_3, v_4, v_5\} \). Then stop the process because all the vertices are appeared. Now, the required sapping tree is \(v_1 - v_2 - v_3 - v_4 - v_5 \). The minimal weight is \(0.4 + 0.367 + 0.2 + 0.6 = 1.567 \). This minimal spanning tree is comparing with different than Prim’s, namely Kruskal’s algorithm.
Minimal spanning tree by using Kruskal’s algorithm:

Input: Neutrosophic weighted graph.
Output: MST of the given neutrosophic weighted graph with n-1 edges.

Neutrosophic Kruskal’s algorithm:

Step: 1 Compute the Adjacency matrix of the given neutrosophic weighted graph.
Step: 2 With help of the score function of NCWG, change the adjacency matrix to scores matrix by replacing edge weight with its score value.
Step: 3 List the edges of NCWG in the order of non-decreasing weights
Step: 4 Start with a small weighted edge, proceed sequentially by selecting one edge at a time such that no cyclic is formed.
Step: 5 Stop the process of step:4 when n-1 edges are selected.
These n-1 edges make up a minimal neutrosophic spanning tree of neutrosophic weighted graph G.

Remark: The process of step: 4 is called greedy process.

By using the same numerical example, we consider the adjacency matrix and also score function both are same. (ref. above example)

Now, according to the Kruskal’s algorithm, we chose minimum weight edge first, the edge is \(\{v_3, v_4\}\) with minimum weight is 2.

After that, we consider the next smallest weight edge is \(\{v_1, v_4\}\) with weight 0.367.
Next, we repeat this processor we get the smallest weight is 0.4 add the edge $\{v_1, v_2\}$.

After that, we consider the smallest weight edge is 0.5 $\{v_2, v_3\}$ but we add this edge we form a loop, so that we does not consider that edge. Further, we go to the edge $\{v_3, v_5\}$ with minimum weight is 0.6. Therefore the required sapping tree is

The minimal weight is $0.4 + 0.367 + 0.2 + 0.6 = 1.567$.
3.1. **Comparative Study.**

<table>
<thead>
<tr>
<th>References</th>
<th>Score functions</th>
<th>Minimal weight (Prim’s and Kruskal’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>(S_{ZHANG}(A) = \frac{2 + T - I - F}{3})</td>
<td>1.567</td>
</tr>
<tr>
<td>11</td>
<td>(S_{ZHANG}(A) = \frac{1 + (1 + T - 2I - F)(2 - T - F)}{2})</td>
<td>1.345</td>
</tr>
<tr>
<td>10</td>
<td>(S_{ZHANG}(A) = \frac{1 + T - 2I - F}{2})</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

4. **Conclusion**

This study indicates the extension of the neutrosophic theory. Here we thought that the minimal spanning algorithms extended to neutrosophic graphs. In particularly by using different three score functions we derive the different minimal weights but by using Prim’s and Kruskal’s we get the equal minimal weights which satisfies that Prim’s and Kruskal’s satisfies in neutrosophic theory also.

References

DEPARTMENT OF MATHEMATICS
ACHARYA NAGARJUNA UNIVERSITY
GUNTUR, INDIA

Email address: sandhyasrinivas2009@gmail.com

DEPARTMENT OF MATHEMATICS
BAPATLA ENGINEERING COLLEGE
BAPATLA, GUNTUR, INDIA

Email address: himaja96@gmail.com