A NOTE ON VERTEX-EDGE DOMINATING COLORING

R. MADHIYALAGAN1 AND A. WILSONBASKAR

\textbf{ABSTRACT.} A vertex u in a graph is said to \textit{ve-dominate} an edge $e = vw$ if $u \in \{v, w\}$ or $uv \in E(G)$ or $uw \in E(G)$. An edge coloring is said to be a ve-dominating if no two edges ve - dominated by a single vertex receive the same color. The minimum number of colors required for a ve - dominating coloring of a graph G is called \textit{ve - chromatic number} of G and is denoted by $\chi_{ve}(G)$. In this paper we find ve - chromatic number for special type of graph, called necklace.

1. \textsc{Introduction}

Let $G = (V, E)$ be a non-trivial connected graph of finite order. A vertex v in a graph is said to \textit{ve-dominate} an edge $e = uw$ if either $v \in \{u, w\}$ or $vu \in E(G)$ or $vw \in E(G)$. A subset $D \subseteq V(G)$ is said to be a \textit{ve - dominating set} of a graph G if every edge in the graph is dominated by a vertex in D. The minimum cardinality of a \textit{ve - dominating set} of a graph is called \textit{ve - domination number} of the graph and is denoted by $\gamma_{ve}(G)$. The study of ve - domination number has been initiated in [1]. An \textit{edge coloring} of a graph is called \textit{ve}-dominating coloring if the edges ve - dominated by a single vertex receive different colors. The minimum number of colors required for a ve - dominating coloring of a graph G is called \textit{ve - chromatic number} of G and is denoted by $\chi_{ve}(G)$. For a vertex v of a graph G, the ve - degree of v is defined as the number of edges ve - dominated by the vertex v and is denoted by $\text{deg}_{ve}(v)$. The minimum and maximum ve - degrees of the graph are defined

1corresponding author

22020 Mathematics Subject Classification. 05C15, 05C69.

\textit{Key words and phrases.} ve-domination, ve-chromatic number.
as \(\delta_{ve}(G) = \min\{ \deg_{ve}(v) | v \in V(G) \} \) and \(\Delta_{ve}(G) = \max\{ \deg_{ve}(v) | v \in V(G) \} \), respectively.

Observation 1.1. [2] For any graph \(G \), \(\chi_{ve}(G) \geq \Delta_{ve}(G) \).

2. \(\chi_{ve} \) of Necklace Graph

Definition 2.1. A Halin graph \(G \) is a plane graph obtained from a planar embedding of a tree \(T \) of order at least 4, whose vertices are of degree one or at least 3 by joining all the vertices of degree 1 in tree \(T \) as a cycle \(C' \), so that \(C' \) is the boundary of the unbounded face.

Definition 2.2. The tree \(T \) and the cycle \(C' \) is called the characteristic tree and the adjoint cycle of \(G \) respectively.

Definition 2.3. A caterpillar is a tree such that the removal of the leaves becomes a path.

Definition 2.4. A Halin graph \(G \) is called a cubic Halin graph if \(\deg(v) = 3 \) for all \(v \in G \). A cubic Halin graph in which the characteristic tree is a caterpillar is called necklace.

Lemma 2.1. Let \(G \) be a graph with \(\chi_{ve}(G) \geq 9 \). Let \(A, B, C, D \) be four vertices of degree 3 on \(C_4 \). Let \(X, Y, Z, W \) be the other neighbors of \(A \) and \(B \), \(C \) and \(D \) respectively. Then \(LE(G) \) is a graph obtained from \(G \) by replacing edge-induced subgraph \(G[<A, B, C, D>] \) by a ladder of length 7. Then \(\chi_{ve}(LE(G)) \leq \chi_{ve}(G) \)

Proof.

Notation 1. Let \(G_i = LE(G_{i-1}) \) where \(i \geq 2 \) and \(G_1 = LE(G) \).
Theorem 2.1.

\[\chi_{ve}(N_{e_h}) = \begin{cases}
6, & \text{if } h = 1 \\
9, & \text{if } h \equiv 2 \pmod{3} \\
10, & \text{if } h \equiv 0 \text{ or } 1 \pmod{3} \text{ and } h \geq 15, h = 9, 12 \\
11, & \text{if } h = 6, 10, 13 \\
12, & \text{if } h = 3, 7 \\
14, & \text{if } h = 4
\end{cases} \]

Proof. Case 1: When \(h = 1 \), \(|E(N_{e_1})| = 6 \). A single vertex dominates all the six edges. Therefore, \(\chi_{ve}(N_{e_1}) = 6 \).

\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array} \]

\(N_{e_1} \)

Case 2: If \(h \equiv 2 \pmod{3} \), then \(N_{e_h} = G_i \) for some \(i \). By Lemma 2.1, \(\chi_{ve}(N_{e_h}) \leq \chi_{ve}(N_{e_5}) \leq 9 \). Since \(\chi_{ve}(N_{e_h}) \geq \Delta_{ve} = 9 \), \(\chi_{ve}(N_{e_h}) = 9 \).

\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array} \]

\(N_{e_5} \)

Case 3: If \(h \equiv 0 \pmod{3} \). Then \(|E(N_{e_h})| = 3(3k) + 3 = 9k + 3 \). Using 9 colors to color its edges, each color class contains atmost \(k \) edges. Therefore, the remaining 3 edges cannot be colored with 9 colors. Hence, \(\chi_{ve}(N_{e_h}) \geq 10 \). By Lemma 2.1 \(10 \leq \chi_{ve}(N_{e_h}) \leq \chi_{ve}(N_{e_9}) \leq 10 \). Therefore, \(\chi_{ve}(N_{e_h}) = 10 \).
Case 4: If \(h \equiv 1 \pmod{3} \). Then \(|E(Ne_h)| = 3(3k+1) + 3 = 9k+6 \). Using 9 colors to color its edges, each color class contains atmost \(k \) edges. Therefore, the remaining 6 edges cannot be colored with 9 colors. Hence, \(\chi_{ve}(Ne_h) \geq 10 \). By Lemma 2.1, \(10 \leq \chi_{ve}(Ne_h) \leq \chi_{ve}(Ne_{16}) \leq 10 \). Therefore, \(\chi_{ve}(Ne_h) = 10 \).

Case 5: When \(h = 6, 10, 13 \).
When \(h = 6 \).
For N_{e_6}, $|E(N_{e_6})| = 21$. If we use 9 colors, then each ve-color class contains at most 2 edges and at least 3 edges are uncolored. If we use 10 colors, then each ve-color class contains at most 2 edges and at least one edge is uncolored. Therefore, $\chi_{ve}(N_{e_6}) \geq 11$.

When $h = 10$.

For $N_{e_{10}}$, $|E(N_{e_{10}})| = 33$. If we use 9 colors, then each ve-color class contains at most 3 edges and at least 6 edges are uncolored. If we use 10 colors, then each ve-color class contains at most 3 edges and at least 3 edges are uncolored. Therefore, $\chi_{ve}(N_{e_{10}}) \geq 11$.

When $h = 13$.

For $N_{e_{13}}$, $|E(N_{e_{13}})| = 42$. If we use 9 colors, then each ve-color class contains at most 4 edges and at least 6 edges are uncolored. If we use 10 colors, then each ve-color class contains at most 4 edges and at least 2 edges are uncolored. Therefore, $\chi_{ve}(N_{e_{13}}) \geq 11$.

Case 6: When $h = 3, 7$.

When $h = 3$.
For Ne_3, $|E(Ne_3)| = 12$. Any two edges are ve-dominated by a vertex. Therefore, $\chi_{ve}(Ne_3) = |E(Ne_3)| = 12$.

When $h = 7$.

For Ne_7, $|E(Ne_7)| = 24$. If we use 9 colors, then each ve-color class contains atmost 2 edges and atleast 6 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 2 edges and atleast 4 edges are uncolored. If we use 11 colors, then each ve-color class contains atmost 2 edges and atleast 2 edges are uncolored. Therefore, $\chi_{ve}(Ne_7) \geq 12$.

Case 7: When $h = 4$

For Ne_4, $|E(Ne_4)| = 15$. If we use 9 colors, then each ve-color class contains atmost 1 edge and atleast 6 edges are uncolored. If we use 10 colors, then each ve-color class contains atmost 1 edge and atleast 5 edges are uncolored. If we use 11 colors, then each ve-color class contains atmost 1 edge and atleast 4 edges are uncolored.
uncolored. If we use 12 colors, then each ve-color class contains atmost 1 edge and atleast 3 edges are uncolored. If we use 13 colors, then each ve-color class contains atmost 1 edge and atleast 2 edges are uncolored. Therefore, $\chi_{ve}(N_4) \geq 14$. □

REFERENCES

GOVERNMENT HIGHER SECONDARY SCHOOL
AVANAM, THANJAVUR DISTRICT
Email address: mdmatialagan@gmail.com

RAMANUJAN RESEARCH CENTER IN MATHEMATICS
SARASWATHI NARAYANAN COLLEGE
MANDURAI
Email address: arwilvic@yahoo.com