INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR SUB E-FUNCTIONS

NASHAT FARIE, MOHAMED S. S. ALI, AND ZEINAB M. YEHIA

ABSTRACT. In this paper, we show that the power function of sub E-function $f^n(x)$ is sub E-function. Furthermore, we establish some new integral inequalities of Hadamard type involving sub E-functions and concave E-functions.

1. INTRODUCTION

Let $f : I \to \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a < b$. There are many generalizations of the notion of convex functions see [3,4,7,10]. One way to generalize the notion of convex function is to replace linear functions by another family of functions in the sense of Beckenbach [3]. In this paper, we deal with a family $\{E(x)\}$ of exponential functions

$$E(x) = A \exp Bx,$$

where A, B arbitrary constants.

The Hermite-Hadamard integral inequality for convex functions $f : [a, b] \to \mathbb{R}$

$$f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2},$$

corresponding author

2010 Mathematics Subject Classification. 26A51, 26B25, 26D15.

Key words and phrases. Generalized convex functions, sub E-functions, supporting functions, Hadamard’s inequality.
is well known in the literature and has many applications for special means, see for example [2, 6, 9]. The Hermite-Hadamard integral inequality (1.1) was established for sub-E-functions in [1] as

$$f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq L(f(a), f(b)),$$

where, $L(f(a), f(b)) := \frac{f(b) - f(a)}{\ln f(b) - \ln f(a)}$, $f(a), f(b) \geq 0$, $f(a) \neq f(b)$.

In this work, we proved that the higher powers of sub-E-function is sub-E-function in addition to establish some new integral inequalities of Hadamard type involving sub-E-functions and concave E-functions.

2. Definitions and Preliminary Results

In this section, we introduce the basic definitions and results which will be used later. For more informations see [1], [5], [8].

Definition 2.1. A positive function $f : I \to (0, \infty)$ is called sub-E-function on I, if for any $a, b \in I$ with $a < b$ the graph of $f(x)$ for $a < x < b$ lies on or under the graph of a function

$$E(x) = Ae^{Bx},$$

where A and B are taken so that $E(a) = f(a)$, and $E(b) = f(b)$.

Equivalently, for all $x \in [a, b]$

$$f(x) \leq E(x) \leq \exp \left[\frac{(b - x) \ln f(a) + (x - a) \ln f(b)}{b - a} \right].$$

(2.1)

If the inequality (2.1) holds with “\geq”, then the function will be called concave E-function on I.

Note the following: There is more than one formula for the function $E(x)$ other than that stated in (2.1); for example,

$$E(x) = f(a)e^{B(x - a)}; \quad B = \frac{\ln f(b) - \ln f(a)}{b - a},$$

or in a multiplicative form

$$E(x) = [f(a)]^{\frac{b - x}{b - a}}[f(b)]^{\frac{x - a}{b - a}}.$$
Remark 2.1. The sub E-functions possess a number of properties analogous to those of convex functions. For example: If $f : I \to (0, \infty)$ is sub E-function, then for any $a, b \in I$, the inequality $f(x) \geq E(x)$ holds outside the interval $[a, b]$.

Definition 2.2. Let a function $f : I \to (0, \infty)$ be sub E-function. A function
$$T_u(x) = Ae^{Bx},$$
is said to be supporting function for $f(x)$ at the point $u \in (a, b)$ if
1. $T_u(u) = f(u)$,
2. $T_u(x) \leq f(x) \quad \forall x \in I$.
That is, if $f(x)$ and $T_u(x)$ agree at $x = u$, the graph of $f(x)$ lies on or above the support curve.

Proposition 2.1. If $f : I \to \mathbb{R}$ is a differentiable sub E-function, then the supporting function for $f(x)$ at the point $u \in I$ has the form
$$T_u(x) = f(u) \exp \left[(x - u) \frac{f'(u)}{f(u)} \right].$$

Remark 2.2. For a sub E-function $f : I \to (0, \infty)$, we write the supporting function at $u \in I$ in the following form
$$T_u(x) = f(u) \exp \left[(x - u) \frac{M_{u,f}}{f(u)} \right].$$
The constant $M_{u,f}$ is equal to $f'(u)$ if f is differentiable at the point $u \in I$; otherwise $f'_{-}(u) \leq M_{u,f} \leq f'_{+}(u)$.

Theorem 2.1. Let $f : I \to (0, \infty)$ be a two times continuously differentiable function. The function f is sub E-function on I if and only if $f(x)f''(x) - (f'(x))^2 \geq 0$ for all x in I.

Theorem 2.2. A function $f : I \to (0, \infty)$ is sub E-function on I if and only if there exist a supporting function for $f(x)$ at each point $x \in I$.

Theorem 2.3. If a function $f : [a, b] \to \mathbb{R}$ is continuous and g is an integrable function that does not change sign on $[a, b]$, then there exists c in (a, b) such that
$$\int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$
3. Main Results

Theorem 3.1. Let \(f : I \to (0, \infty) \) be a sub \(E \)-function and two times continuously differentiable then the higher powers of \(f(x) \) is sub \(E \)-function.

Proof. Since \(f(x) \) is non-negative and sub \(E \)-function then,

\[
(3.1) \quad f(x) \geq 0, \quad f(x)f''(x) - (f'(x))^2 \geq 0 \quad \forall x \in I.
\]

Hence,

\[
(f^n(x))' = nf^{n-1}(x)f'(x),
\]

\[
(f^n(x))'' = n(n - 1)f^{n-2}(x)(f'(x))^2 + n f^{n-1}(x)f''(x).
\]

Now using (3.1), we conclude that:

\[
f^n(x)(f^n(x))'' - ((f^n(x))')^2 \geq 0.
\]

Hence, \(f^n(x) \) is sub \(E \)-function.

\[\square\]

Theorem 3.2. Let \(f : I \to (0, \infty) \) be sub \(E \)-function, \(n \in \mathbb{N} \) and \(a, b \in I \) with \(a < b \), then

\[
\frac{f^n(a)}{nB} \left[e^{nB(b-a)} - 1 \right] \leq \int_a^b f^n(x)dx \leq \frac{f^{n+1}(u)}{nf'(u)} \left[\exp \left(n(b-u) \frac{f'(u)}{f(u)} \right) - \exp \left(n(a-u) \frac{f'(u)}{f(u)} \right) \right],
\]

where, \(B = \frac{\ln f(b) - \ln f(a)}{b-a} \).

Proof. Let \(u \) an arbitrary point in \((a, b)\). As \(f(x) \) is a sub \(E \)-function, then from Definition 2.1 we observe that the graph of \(f(x) \) lies nowhere above the function

\[
E(x) = f(a)e^{B(x-a)}; \quad B = \frac{\ln f(b) - \ln f(a)}{b-a},
\]
and nowhere below any supporting function.

\[T_u(x) = f(u) \exp \left[(x - u) \frac{f'(u)}{f(u)} \right] \]

(3.3)

at the point \(u \in (a, b) \). Thus,

\[T_u(x) \leq f(x) \leq E(x), \quad x \in [a, b]. \]

As \(f(x) \), \(T_u(x) \) are non-negative functions, then

\[T_u^n(x) \leq f^n(x) \leq E^n(x) \quad \forall n \in \mathbb{N}. \]

(3.4)

\[\int_a^b T_u^n(x) dx \leq \int_a^b f^n(x) dx \leq \int_a^b E^n(x) dx. \]

Using (3.2), one has

\[\int_a^b f^n(x) dx = \int_a^b E^n(x) dx \]

\[= \int_a^b f^n(a) e^{nB(x-a)} dx \]

\[= \left. \frac{f^n(a)}{nB} e^{nB(x-a)} \right|_a^b \]

\[= \frac{f^n(a)}{nB} \left(e^{nB(b-a)} - 1 \right). \]

(3.5)

Using (3.3), (3.4), one obtains:

\[\int_a^b f^n(x) dx \geq \int_a^b T_u^n(x) dx \]

\[= \int_a^b f^n(u) \exp \left[n(x - u) \frac{f'(u)}{f(u)} \right] dx \]

\[= \left. f^n(u) \frac{f(u)}{nf'(u)} \exp \left[n(x - u) \frac{f'(u)}{f(u)} \right] \right|_a^b \]

\[= \frac{f^{n+1}(u)}{nf'(u)} \left[\exp \left[n(b - u) \frac{f'(u)}{f(u)} \right] - \exp \left[n(a - u) \frac{f'(u)}{f(u)} \right] \right]. \]

(3.6)

Hence, from (3.4), (3.5), (3.6) we get the required inequality. \(\square \)

Theorem 3.3. If \(f : I \to (0, \infty) \) is sub \(E \)-function on \(I \) then,

\[f \left(\frac{x + y}{2} \right) \leq \sqrt{f(x)f(y)}, \quad \forall x, y \in I. \]
Hence, the theorem follows. □

\[f \left(\frac{a+b}{2} \right) \leq \exp \left[\frac{b-a}{2} \ln f(a) + \frac{b-a}{2} \ln f(b) \right] \]

= \exp \left[\ln f(a) + \ln f(b) \right] \\
= \exp \left[\frac{\ln f(a)f(b)}{2} \right] \\
= \sqrt{f(a)f(b)}. \\

\[\Box \]

Theorem 3.4. Let \(f, g : I \to (0, \infty) \) be continuous, sub E-functions on \(I, a, b \in I \) with \(a < b, c_1, c_2 \in (a, b) \) and \(\alpha, \beta > 0 \) with \(\alpha + \beta = 1 \). Then the following inequality holds

\[
\int_a^b f(x)g(x)dx \leq \alpha f(a)g(c_1) \left[\frac{1}{B_1} (e^{B_1(b-a)} - 1) \right] + \beta g(a)f(c_2) \left[\frac{1}{B_2} (e^{B_2(b-a)} - 1) \right].
\]

Proof. Since \(f, g \) are sub E-functions, we have

\[
f(x) \leq f(a)e^{B_1(x-a)}, \quad B_1 = \frac{\ln f(b) - \ln f(a)}{b-a},
\]

\[
g(x) \leq g(a)e^{B_2(x-a)}, \quad B_2 = \frac{\ln g(b) - \ln g(a)}{b-a},
\]

multiplying both sides of (3.7) and (3.8) by \(\alpha g(x) \) and \(\beta f(x) \) respectively and adding the resulting inequalities we get

\[
f(x)g(x) \leq \alpha f(a)g(x)e^{B_1(x-a)} + \beta g(a)f(x)e^{B_2(x-a)}.
\]

Integrating both sides of (3.9) with respect to \(x \) from \(a \) to \(b \), we get

\[
\int_a^b f(x)g(x)dx \leq \alpha f(a) \int_a^b g(x)e^{B_1(x-a)}dx + \beta g(a) \int_a^b f(x)e^{B_2(x-a)}dx.
\]

Let \(c_1, c_2 \in (a, b) \), by using integral form of mean value theorem, we get

\[
\int_a^b f(x)g(x)dx \leq \alpha f(a)g(c_1) \int_a^b e^{B_1(x-a)}dx + \beta g(a)f(c_2) \int_a^b e^{B_2(x-a)}dx,
\]

\[
= \alpha f(a)g(c_1) \left[\frac{1}{B_1} (e^{B_1(b-a)} - 1) \right] + \beta g(a)f(c_2) \left[\frac{1}{B_2} (e^{B_2(b-a)} - 1) \right].
\]

Hence, the theorem follows. □
Theorem 3.5. Let \(f, g : I \to (0, \infty) \) be continuous, sub \(E \)-functions on \(I \), \(a, b \in I \) with \(a < b \) and \(\alpha, \beta > 0 \) with \(\alpha + \beta = 1 \). Then the following inequality holds:

\[
\int_a^b f(x)g(x)dx \geq \alpha \frac{f^2(a)}{M_{a,f}} g(c_1) \left[\exp \frac{M_{a,f}(b-a)}{f(a)} - 1 \right] + \beta \frac{g^2(a)}{M_{a,g}} f(c_2) \left[\exp \frac{M_{a,g}(b-a)}{g(a)} - 1 \right].
\]

Proof. Since \(f, g \) are sub \(E \)-functions on \(I \), from Definition 2.2, we have that \(\forall x, y \in I \)

\[
f(x) \geq f(y) \exp \left((x-y) \frac{M_{y,f}}{f(y)} \right),
\]

\[
g(x) \geq g(y) \exp \left((x-y) \frac{M_{y,g}}{g(y)} \right),
\]

where \(M_{y,f} \) is a fixed real number depending on \(y, f \). Multiplying both sides of (3.10) and (3.11) by \(\alpha f(x) \) and \(\beta g(x) \) respectively and adding the resulting inequalities, we get

\[
f(x)g(x) \geq \alpha g(x)f(y) \exp \left[(x-y) \frac{M_{y,f}}{f(y)} \right] + \beta f(x)g(y) \exp \left[(x-y) \frac{M_{y,g}}{g(y)} \right],
\]

by taking \(y = a \) in (3.12), we get

\[
f(x)g(x) \geq \alpha g(x)f(a) \exp \left[(x-a) \frac{M_{a,f}}{f(a)} \right] + \beta f(x)g(a) \exp \left[(x-a) \frac{M_{a,g}}{g(a)} \right].
\]

Integrating both sides of (3.13) with respect to \(x \) from \(a \) to \(b \), we get

\[
\int_a^b f(x)g(x)dx \geq \alpha f(a) \int_a^b g(x) \exp \left[(x-a) \frac{M_{a,f}}{f(a)} \right] dx + \beta g(a) \int_a^b f(x) \exp \left[(x-a) \frac{M_{a,g}}{g(a)} \right] dx.
\]

Let \(c_1, c_2 \in (a, b) \), by using integral form of mean value theorem, we get

\[
\int_a^b f(x)g(x)dx \geq \alpha f(a)g(c_1) \int_a^b \exp \left[(x-a) \frac{M_{a,f}}{f(a)} \right] dx + \beta g(a)f(c_2) \int_a^b \exp \left[(x-a) \frac{M_{a,g}}{g(a)} \right] dx,
\]

\[
= \frac{\alpha}{M_{a,f}} f^2(a)g(c_1) \left[\exp \frac{M_{a,f}(b-a)}{f(a)} - 1 \right] + \frac{\beta}{M_{a,g}} g^2(a)f(c_2) \left[\exp \frac{M_{a,g}(b-a)}{g(a)} - 1 \right].
\]

Hence, the theorem follows. \(\square \)

Theorem 3.6. Let \(f : I \to (0, \infty) \) be sub \(E \)-function on \(I \), \(g : I \to (0, \infty) \) be concave \(E \)-function on \(I \), \(a, b \in I \) with \(a < b \) and \(\alpha > 1 \) with \(\alpha + \beta = 1 \). Then the
following inequality holds

\[
\int_a^b f(x)g(x)dx \geq \alpha f\left(\frac{a+b}{2}\right) \int_a^b g(x) \exp \left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b,f}}}{f\left(\frac{a+b}{2}\right)} \right] dx \\
+ \beta g\left(\frac{a+b}{2}\right) \int_a^b f(x) \exp \left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b,g}}}{g\left(\frac{a+b}{2}\right)} \right] dx.
\]

Proof. Since \(f\) is sub-\(E\)-function on \(I\) and \(g\) is concave \(E\)-function on \(I\), we have that \(\forall x, y \in I\)

\[
f(x) \geq f(y) \exp \left[(x - y) \frac{M_{y,f}}{f(y)} \right],
\]

(3.14)

\[
g(x) \leq g(y) \exp \left[(x - y) \frac{M_{y,g}}{g(y)} \right],
\]

(3.15)

where \(M_{y,f}\) is a fixed real number depending on \(y, f\). Multiplying both sides of (3.14) and (3.15) by \(\alpha g(x)\) and \(\beta f(x)\) respectively and adding the resulting inequalities, we get

\[
f(x)g(x) \geq \alpha g(x)f(y) \exp \left[(x - y) \frac{M_{y,f}}{f(y)} \right] + \beta f(x)g(y) \exp \left[(x - y) \frac{M_{y,g}}{g(y)} \right].
\]

(3.16)

By taking \(y = \frac{a+b}{2}\) in (3.16), hence

\[
f(x)g(x) \geq \alpha g(x)f\left(\frac{a+b}{2}\right) \exp \left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b,f}}}{f\left(\frac{a+b}{2}\right)} \right] \\
+ \beta f(x)g\left(\frac{a+b}{2}\right) \exp \left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b,g}}}{g\left(\frac{a+b}{2}\right)} \right],
\]

(3.17)

integrating both sides of (3.17) with respect to \(x\) from \(a\) to \(b\), we get the desired inequality

\[
\int_a^b f(x)g(x)dx \geq \alpha f\left(\frac{a+b}{2}\right) \int_a^b g(x) \exp \left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b,f}}}{f\left(\frac{a+b}{2}\right)} \right] dx \\
+ \beta g\left(\frac{a+b}{2}\right) \int_a^b f(x) \exp \left[(x - \frac{a+b}{2}) \frac{M_{\frac{a+b,g}}}{g\left(\frac{a+b}{2}\right)} \right] dx.
\]

□
Theorem 3.7. Let $f, g : I \to (0, \infty)$ be sub E-functions on I, $a, b \in I$ with $a < b$ and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then the following inequality holds

$$\int_a^b f(x)g(x)dx \geq \alpha f\left(\frac{a+b}{2}\right) \int_a^b g(x) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, f\right)}{f\left(\frac{a+b}{2}\right)}\right] dx$$

$$+ \beta g\left(\frac{a+b}{2}\right) \int_a^b f(x) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, g\right)}{g\left(\frac{a+b}{2}\right)}\right] dx.$$

Proof. Since f, g are sub E-functions on I, from Definition 2.2, we have that for all $x, y \in I$

$$f(x) \geq f(y) \exp \left[\left(x - y\right) \frac{M_{y,f}}{f(y)}\right], \quad (3.18)$$

$$g(x) \geq g(y) \exp \left[\left(x - y\right) \frac{M_{y,g}}{g(y)}\right], \quad (3.19)$$

where $M_{y,f}$ is a fixed real number depending on y, f. Multiplying both sides of (3.18) and (3.19) by $\alpha g(x)$ and $\beta f(x)$ respectively and adding the resulting inequalities, we get

$$f(x)g(x) \geq \alpha g(x) f\left(\frac{a+b}{2}\right) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, f\right)}{f\left(\frac{a+b}{2}\right)}\right]$$

$$+ \beta f(x) g\left(\frac{a+b}{2}\right) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, g\right)}{g\left(\frac{a+b}{2}\right)}\right]. \quad (3.20)$$

By taking $y = \frac{a+b}{2}$ in (3.20), hence

$$f(x)g(x) \geq \alpha g(x) f\left(\frac{a+b}{2}\right) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, f\right)}{f\left(\frac{a+b}{2}\right)}\right]$$

$$+ \beta f(x) g\left(\frac{a+b}{2}\right) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, g\right)}{g\left(\frac{a+b}{2}\right)}\right], \quad (3.21)$$

integrating both sides of (3.21) with respect to x from a to b, we get

$$\int_a^b f(x)g(x)dx \geq \alpha f\left(\frac{a+b}{2}\right) \int_a^b g(x) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, f\right)}{f\left(\frac{a+b}{2}\right)}\right] dx$$

$$+ \beta g\left(\frac{a+b}{2}\right) \int_a^b f(x) \exp \left[\left(x - \frac{a+b}{2}\right) \frac{M\left(\frac{a+b}{2}, g\right)}{g\left(\frac{a+b}{2}\right)}\right] dx.$$
Theorem 3.8. Let \(f, g \) and \(h : I \to (0, \infty) \) be sub \(E \)-functions on \(I \) and \(a, b \in I \) with \(a < b \). Then the following inequality holds

\[
3 \int_a^b f(x)g(x)h(x) \, dx \geq f\left(\frac{a+b}{2}\right) \int_a^b g(x)h(x) \exp \left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, f)}{f(\frac{a+b}{2})} \right] \, dx \\
+ g\left(\frac{a+b}{2}\right) \int_a^b f(x)h(x) \exp \left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, g)}{g(\frac{a+b}{2})} \right] \, dx \\
+ h\left(\frac{a+b}{2}\right) \int_a^b f(x)g(x) \exp \left[(x - \frac{a+b}{2}) \frac{M(\frac{a+b}{2}, h)}{h(\frac{a+b}{2})} \right] \, dx.
\]

Proof. Since \(f, g \) and \(h \) are sub \(E \)-functions on \(I \), from Definition 2.2, we have \(\forall x, y \in I \)

\[
(3.22) \quad f(x) \geq f(y) \exp \left[(x - y) \frac{M_y,f}{f(y)} \right],
\]

\[
(3.23) \quad g(x) \geq g(y) \exp \left[(x - y) \frac{M_y,g}{g(y)} \right],
\]

\[
(3.24) \quad h(x) \geq h(y) \exp \left[(x - y) \frac{M_y,h}{h(y)} \right],
\]

multiplying both sides of (3.22), (3.23) and (3.24) by \(g(x)h(x) \), \(f(x)h(x) \) and \(f(x)g(x) \) respectively and adding the resulting inequalities

\[
3 f(x)g(x)h(x) \geq g(x)h(x)f(y) \exp \left[(x - y) \frac{M_y,f}{f(y)} \right] \\
+ f(x)h(x)g(y) \exp \left[(x - y) \frac{M_y,g}{g(y)} \right] \\
+ f(x)g(x)h(y) \exp \left[(x - y) \frac{M_y,h}{h(y)} \right].
\]

(3.25)
Now, if we choose \(y = \frac{a + b}{2} \) in (3.25), we obtain

\[
3f(x)g(x)h(x) \geq g(x)h(x)f\left(\frac{a + b}{2}\right)\exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{f\left(\frac{a + b}{2}\right)} \\
+ f(x)h(x)g\left(\frac{a + b}{2}\right)\exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{g\left(\frac{a + b}{2}\right)} \\
+ f(x)g(x)h\left(\frac{a + b}{2}\right)\exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{h\left(\frac{a + b}{2}\right)}.
\]

(3.26)

Integrating both sides of (3.26) with respect to \(x \) from \(a \) to \(b \), we get

\[
3 \int_a^b f(x)g(x)h(x)dx \geq f\left(\frac{a + b}{2}\right) \int_a^b g(x)h(x) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{f\left(\frac{a + b}{2}\right)} dx \\
+ g\left(\frac{a + b}{2}\right) \int_a^b f(x)h(x) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{g\left(\frac{a + b}{2}\right)} dx \\
+ h\left(\frac{a + b}{2}\right) \int_a^b f(x)g(x) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{h\left(\frac{a + b}{2}\right)} dx.
\]

Hence, the theorem follows. \(\square \)

Theorem 3.9. Let \(f_1, f_2, \ldots, f_n \) and \(h : I \to (0, \infty) \) be sub \(E \)-functions on \(I \) and \(a, b \in I \) with \(a < b \). Further, let \(\alpha_1, \alpha_2, \ldots, \alpha_n > 0 \) with \(\sum_{i=1}^n \alpha_i = 1 \). Then the following inequality holds

\[
\int_a^b \prod_{i=1}^n f_i(x)dx \geq \alpha_1 f_1\left(\frac{a + b}{2}\right) \int_a^b f_2(x)f_3(x)\ldots f_n(x) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{f_1\left(\frac{a + b}{2}\right)} dx \\
+ \alpha_2 f_2\left(\frac{a + b}{2}\right) \int_a^b f_1(x)f_3(x)\ldots f_n(x) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{f_2\left(\frac{a + b}{2}\right)} dx \\
+ \cdots \\
+ \alpha_n f_n\left(\frac{a + b}{2}\right) \int_a^b f_1(x)f_2(x)\ldots f_{n-1}(x) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\alpha b}}{f_n\left(\frac{a + b}{2}\right)} dx.
\]
Proof. Since \(f_1, f_2, \ldots, f_n \) are sub E-functions on \(I \), we have \(\forall x, y \in I \)

\[
\begin{align*}
(3.27) \quad f_1(x) & \geq f_1(y) \exp \left((x - y) \frac{M_{y,f_1}}{f_1(y)} \right) \\
(3.28) \quad f_2(x) & \geq f_2(y) \exp \left((x - y) \frac{M_{y,f_2}}{f_2(y)} \right), \\
& \vdots \\
(3.29) \quad f_n(x) & \geq f_n(y) \exp \left((x - y) \frac{M_{y,f_n}}{f_n(y)} \right).
\end{align*}
\]

Multiplying both sides of (3.27), (3.28),... and (3.29) by \(\alpha_1 f_2(x) f_3(x) \ldots f_n(x), \alpha_2 f_1(x) f_3(x) \ldots f_n(x), \ldots, \) and \(\alpha_n f_1(x) f_2(x) \ldots f_{n-1}(x) \) respectively and adding the resulting inequalities

\[
\prod_{i=1}^{n} f_i(x) \geq \alpha_1 f_2(x) f_3(x) \ldots f_n(x) f_1(y) \exp \left((x - y) \frac{M_{y,f_1}}{f_1(y)} \right) \\
+ \alpha_2 f_1(x) f_3(x) \ldots f_n(x) f_2(y) \exp \left((x - y) \frac{M_{y,f_2}}{f_2(y)} \right) \\
\vdots \\
+ \alpha_n f_1(x) f_2(x) \ldots f_{n-1}(x) f_n(y) \exp \left((x - y) \frac{M_{y,f_n}}{f_n(y)} \right).
\]

Now, if we choose \(y = \frac{a + b}{2} \) in (3.30), we obtain

\[
\prod_{i=1}^{n} f_i(x) \geq \alpha_1 f_2(x) f_3(x) \ldots f_n(x) f_1 \left(\frac{a + b}{2} \right) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\frac{a+b}{2},f_1}}{f_1 \left(\frac{a + b}{2} \right)} \\
+ \alpha_2 f_1(x) f_3(x) \ldots f_n(x) f_2 \left(\frac{a + b}{2} \right) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\frac{a+b}{2},f_2}}{f_2 \left(\frac{a + b}{2} \right)} \\
\vdots \\
+ \alpha_n f_1(x) f_2(x) \ldots f_{n-1}(x) f_n \left(\frac{a + b}{2} \right) \exp \left(x - \frac{a + b}{2} \right) \frac{M_{\frac{a+b}{2},f_n}}{f_n \left(\frac{a + b}{2} \right)}.
\]

Integrating both sides of (3.31) with respect to \(x \) from \(a \) to \(b \), we get the desired inequality. \(\square \)
References

DEPARTMENT OF MATHEMATICS
AIN SHAMS UNIVERSITY
CAIRO, EGYPT
E-mail address: nashatifaried@sci.asu.edu.eg

DEPARTMENT OF MATHEMATICS
AIN SHAMS UNIVERSITY
CAIRO, EGYPT
E-mail address: mss_ali5@yahoo.com

DEPARTMENT OF MATHEMATICS
AIN SHAMS UNIVERSITY
CAIRO, EGYPT
E-mail address: zeinabyhia@edu.asu.edu.eg