A STUDY ON CONCEPTS OF BALLS IN A INTUITIONISTIC FUZZY
D–METRIC SPACES

S. YAHYA MOHAMED AND E. NAARGEES BEGUM

Abstract. Dhage [2] introduced the concept of open balls in a D-Metric space in two different ways and discussed at length the properties of the topologies generated by the family of all open balls of each kind. In this paper, a new concept of balls in a Intuitionistic Fuzzy D-Metric spaces are introduced.

1. INTRODUCTION

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets are introduced by Lotti.A. Zadeh [3] (1965) as an extension of the classical notion of sets. The concept of an intuitionistic fuzzy set can be viewed as an alternative approach to define a fuzzy set in cases where available information is not sufficient for the definition of an imprecise concept by means of a conventional fuzzy set. In general, the theory of intuitionistic fuzzy sets is the generalization of fuzzy sets.

The idea of an intuitionistic fuzzy set was first published by Krassimir Atanassov [1]. In general, the theory of intuitionistic fuzzy sets is the generalization of fuzzy sets. Several researches have shown interest in the intuitionistic fuzzy set

1 Corresponding author

2010 Mathematics Subject Classification. 05C72, 54E50, 03F55.

Key words and phrases. Intuitionistic fuzzy set, intuitionistic fuzzy metric space, D-metric space, intuitionistic fuzzy D-metric space.

1019
theory and successfully applied in many other field. Fuzzy application in almost every direction of mathematics such as arithmetic, topology, graph theory, probability theory, logic etc.,

In 1992, B.C.Dhage [2] proposed the notion of a D–metric space in an attempt to obtain analogous results to those for metric spaces, but in a more general setting. This paper is organized as follows. The definition of intuitionistic fuzzy metric space, D–metric space and fuzzy D–metric space are introduced in section 2. In section 3, we introduce the new concept of intuitionistic fuzzy D–metric spaces and also we discuss about the theorems on balls in a intuitionistic fuzzy D–metric spaces.

2. Preliminaries

Definition 2.1. Let A be a non-empty set. A function $\rho : A \times A \times A \to [0,\infty)$ is called a D–metric on A if

1. $\rho(a, b, c) = 0$ if and only if $a = b = c$ (coincidence);
2. $\rho(a, b, c) = \rho(p(a, b, c))$ for all $a, b, c \in A$ and for any permutation $p(a, b, c)$ of a, b, c (symmetry),
3. $\rho(a, b, c) \leq \rho(a, b, r) + \rho(a, r, c) + \rho(r, b, c)$ for all $a, b, c, r \in A$ (tetrahedral inequality).

If A is a non-empty set and ρ is a D–metric on A, then the ordered pair (A, ρ) is called a D–metric space. When the D–metric ρ is understood, A itself is called a D–metric space.

Definition 2.2. The 3-tuple $(A, M, *)$ is said to be a fuzzy D–metric space, where A is an arbitrary set, $*$ is continuous t-norm and M is a fuzzy set on $A \times A \times A \to [0, \infty)$ satisfying the following conditions: For all $a, b, c, r \in A, s, t, u > 0$.

1. $M(a, b, c, t) = 0$
2. $M(a, b, c, t) = 1$ if and only if $a = b = c$
3. $M(a, b, c, t) = M(p(a, b, c, t))$ for all $a, b, c \in A$ and for any permutation $p(a, b, c, t)$ of a, b, c, t
4. $M(a, b, c, t + s + u) \geq M(a, b, r, t) * M(a, r, c, s) * M(r, b, c, u)$
5. $M(a, b, c, t) : [0, \infty) \to [0, 1]$ is continuous.
Definition 2.3. A 5-tuple \((A, M, N, *, \circ)\) is said to be an intuitionistic fuzzy metric space if \(A\) is an arbitrary set, \(*\) is a continuous t-norm, \(\circ\) is a continuous t-conorm and \(M, N\) are fuzzy sets on \(A^2 \times [0, \infty)\) satisfying the conditions:

1. \(M(a, b, t) + N(a, b, t) \leq 1\) for all \(a, b \in A\) and \(t > 0\);
2. \(M(a, b, 0) = 0\) for all \(a, b \in A\);
3. \(M(a, b, t) = 1\) for all \(a, b \in A\) and \(t > 0\) if and only if \(a = b\);
4. \(M(a, b, t) = M(b, a, t)\) for all \(a, b \in A\) and \(t > 0\);
5. \(M(a, b, t) * M(b, c, s) \leq M(a, c, t + s)\), for all \(a, b, c \in A\) and \(s, t > 0\);
6. \(M(a, b, \cdot) : [0, \infty) \to [0, \infty]\) is left continuous, for all \(a, b \in A\);
7. \(\lim_{t \to \infty} M(a, b, t) = 1\) for all \(a, b \in A\) and \(t > 0\);
8. \(N(a, b, 0) = 1\) for all \(a, b \in A\);
9. \(N(a, b, t) = 0\), for all \(a, b \in A\) and \(t > 0\) if and only if \(a = b\);
10. \(N(a, b, t) = N(b, a, t)\) for all \(a, b \in A\) and \(t > 0\);
11. \(N(a, b, t) \circ N(b, c, s) \geq N(a, c, t + s)\) for all \(a, b, c \in A\) and \(s, t > 0\);
12. \(N(a, b, \cdot) : [0, \infty) \to [0, 1]\) is right continuous, for all \(a, b \in A\);
13. \(\lim_{t \to \infty} N(a, b, t) = 0\) for all \(a, b \in A\).

The functions \(M(a, b, t)\) and \(N(a, b, t)\) denote the degree of nearness and the degree of non-nearness between \(a\) and \(b\) w.r.t. \(t\) respectively.

3. Balls in an intuitionistic fuzzy \(D\)-metric spaces

Definition 3.1. A 5-tuple \((A, M, N, *, \circ)\) is said to be an intuitionistic fuzzy \(D\)-metric space if \(A\) is an arbitrary set, \(*\) is a continuous t-norm, \(\circ\) is a continuous \(t\)-conorm and \(M, N\) are fuzzy sets on \(A^3 \times [0, \infty)\) satisfying the conditions:

1. \(M(a, b, c, t) + N(a, b, c, t) \leq 1\) for all \(a, b, c \in A\) and \(t > 0\);
2. \(M(a, b, c, 0) = 0\) for all \(a, b, c \in A\);
3. \(M(a, b, c, t) = 1\) for all \(a, b, c \in A\) and \(t > 0\) if and only if \(a = b = c\);
4. \(M(a, b, c, t) = M(p(a, b, c, t))\) for all \(a, b, c \in A\) and for any permutation \(p(a, b, c)\) of \(a, b, c\) for \(t > 0\);
5. \((M(a, b, c, t + s + u) \geq M(a, b, r, t) * M(a, r, c, t) * M(r, b, c, u),\) for all \(a, b, c, r \in A\) and \(s, t, u > 0\);
6. \((M(a, b, c, \cdot) : [0, \infty) \to [0, \infty]\) is left continuous for all \(a, b, c \in A\);
7. \(\lim_{t \to \infty} M(a, b, c, t) = 1\) for all \(a, b, c \in A\) and \(t > 0\);
8. \(N(a, b, c, 0) = 1\) for all \(a, b, c \in A\);
\[N(a, b, c, t) = 0 \text{ for all } a, b, c \in A \text{ and } t > 0 \text{ if and only if } a = b = c; \]

(10) \[N(a, b, c, t) = N(p(a, b, c, t)) \text{ for all } a, b, c \in A \text{ and for any permutation } p(a, b, c) \text{ of } a, b, c, t > 0; \]

(11) \[N(a, b, r, t) \circ N(a, r, c, s) \circ N(r, b, c, s) \geq N(a, b, c, t+s+u) \text{ for all } a, b, c, r \in A \text{ and } s, t, u > 0; \]

(12) \[N(a, b, c, \cdot) : [0, \infty) \to [0, 1] \text{ is right continuous, for all } a, b, c \in A; \]

(13) \[\lim_{n \to \infty} N(a, b, c, t) = 0 \text{ for all } a, b, c \in A. \text{ The functions } M(a, b, c, t) \text{ and } \]

\[N(a, b, c, t) \text{ denote the degree of nearness and the degree of non-nearness between } a, b \text{ and } c \text{ w.r.t. } t \text{ respectively.} \]

Definition 3.2. Let \((A, M, N, *, \circ)\) be an intuitionistic fuzzy \(D\)-metric space. Then

1. A sequence \(\{a_n\}\) in \(A\) is said to be Cauchy sequence if for all and \(t > 0\) and \(p, q > 0, \lim_{n \to \infty} M(a_{n+p+q}, a_{n+p}, a_n, t) = 1\) and \(\lim_{n \to \infty} N(a_{n+p+q}, a_{n+p}, a_n, t) = 1.\)

2. A sequence \(\{a_n\}\) in \(X\) is said to be convergent to a point \(a \in A\) if for all \(t > 0\) and \(p > 0, \lim_{n \to \infty} M(a_{n+p}, a_n, a, t) = 1\) and \(\lim_{n \to \infty} N(a_{n+p}, a_n, a, t) = 0.\)

Remark 3.1. Let \((A, M, N, *, \circ)\) be an intuitionistic fuzzy \(D\)-metric space, \(a \in A\) and \(\alpha \in (0, \infty).\)

Let

\[\bar{B}(a, \alpha, t) = \{b \in A : M(a, b, b, t) > 1 - \alpha, N(a, b, c, t) < \alpha\}, \]

\[B(a, \alpha, t) = \{b \in \bar{B}(a, \alpha, t) : M(a, b, c, t) > 1 - \alpha, N(a, b, c, t) < \alpha, \forall c \in \bar{B}(a, \alpha, t)\} \]

\[\bar{\bar{B}}(a, \alpha, t) = \{\{a\} \cup b \in A : \sup_{c \in A} M(a, b, c, t) > 1 - \alpha, \sup_{c \in A} N(a, b, c, t) < \alpha\}. \]

Remark 3.2.

(i) It is clear that \(B(a, \alpha, t) \subseteq \bar{B}(a, \alpha, t),\)

(ii) If \(0 < \alpha_1 < \alpha_2\) then \(\bar{B}(a, \alpha_1, t) \subseteq \bar{B}(a, \alpha_2, t), B(a, \alpha_1, t) \subseteq \bar{B}(a, \alpha_2, t).\)

By \(\bar{B}(a, \alpha, t)\) we mean a set in \(A\) is given by \(\bar{B}(a, \alpha, t) = \{b \in \bar{B}(a, \alpha, t) : \)

\(\text{if } b, c \in \bar{B}(a, \alpha, t)\}. \text{ Then}

\[M(a, b, c, t) > 1 - \alpha, N(a, b, c, t) < \alpha \]

\[= \{b, c \in A : M(a, b, c, t) > 1 - \alpha, N(a, b, c, t) < \alpha\}. \]

It is clear that \(B(a, \alpha, t) \subseteq \bar{B}(a, \alpha, t).\)
Theorem 3.1. Let \((A, M, N, *, \circ)\) be an intuitionistic fuzzy \(D\)-metric space. Then for a fixed \(a \in A\), the balls \(\tilde{B}(a, \alpha, t)\) and \(B(a, \alpha, t)\) are the sets in \(A\) given by,
\[
\tilde{B}(a, \alpha, t) = \left(\frac{a - \alpha t}{1 - \alpha}, \frac{a + \alpha t}{1 - \alpha}\right), \quad B(a, \alpha, t) = \left(\frac{a - \alpha t}{2(1 - \alpha)}, \frac{a + \alpha t}{2(1 - \alpha)}\right).
\]

Proof. Let \(a, b, c \in A\) be arbitrary. Let \(\alpha > 0\) be fixed. Then
\[
\tilde{B}(a, \alpha, t) = \{b \in A : (M(a, b, b, t) > 1 - \alpha, N(a, b, b, t) < \alpha)\} = \{b \in A : |a - b| < \frac{\alpha t}{1 - \alpha}\}
\]

Again,
\[
B(a, \alpha, t) = \{b \in \tilde{B}(a, \alpha, t) : (M(a, b, c, t) > 1 - \alpha, N(a, b, c, t) < \alpha, \forall c \in \tilde{B}(a, \alpha, t))\} \quad (3.1)
\]

This relation (3.1) implies that the set \(B(a, \alpha, t)\) contain all the points \(b, c \in A\) for which one has
\[
|a - b| < \frac{\alpha t}{1 - \alpha}, \quad |a - c| < \frac{\alpha t}{(1 - \alpha)} \quad \text{with} \quad |b - c| < \frac{\alpha t}{1 - \alpha}. \quad (3.2)
\]

In order to hold inequalities in (3.2) we must have,
\[
|a - b| + |a - c| < \frac{\alpha t}{1 - \alpha},
\]

since
\[
|b - c| \leq |b - a| + |a - c|.
\]

Therefore if we take
\[
|a - b| < \frac{\alpha t}{2(1 - \alpha)},
\]

and
\[
|a - c| < \frac{\alpha t}{2(1 - \alpha)},
\]
then the inequalities in (3.2) are satisfied. Thus we have

\[B(a, \alpha, t) = \{ b \in \tilde{B}(a, \alpha, t) : |a - b| < \frac{\alpha t}{2(1 - \alpha)} \} \]

\[B(a, \alpha, t) = (a - \frac{\alpha t}{2(1 - \alpha)}, a + \frac{\alpha t}{2(1 - \alpha)}) \].

\[\square \]

Theorem 3.2. Every ball \(B(a, \alpha, t), a \in A, \alpha > 0 \), is an open set in \(A \). (ie.) it contains a ball of each of its points

Proof. Let \(a \in A \) be arbitrary and \(\alpha > 0 \). Consider the ball \(B(a, \alpha, t) \) in \(A \) and supposed that \(x \in B(a, \alpha, t) \). We will show that there is an \(\tilde{\alpha} > 0, \tilde{\alpha} > \alpha \) such that \(B(x, \tilde{\alpha}, t) \subseteq B(a, \alpha, t) \). Since \(x \in B(a, \alpha, t) \) there is number \(\alpha_1 > 0 \) such that \(M(a, x, x, t) > 1 - \alpha \) and \(N(a, x, x, t) < \alpha_1 \) and \(\alpha_1 < \alpha \). We may choose an arbitrary \(\epsilon > 0 \) such that \(\tilde{B}(a, \alpha_1 + \epsilon, t) \subseteq B(a, \alpha, t) \) which is possible in view of \(\alpha_1 < \alpha \). Since \(\tilde{B}(a, \alpha_1 + \epsilon, t) \) is open ,there is an open ball \(\tilde{B}(x, \tilde{\alpha}, t), \tilde{\alpha} < 0 \) such that \(\tilde{B}(x, \tilde{\alpha}, t) \subseteq B(a, \alpha_1 + \epsilon, t) \subseteq B(a, \alpha, t) \). Again \(B(x, \tilde{\alpha}, t) \subseteq \tilde{B}(x, \tilde{\alpha}, t) \). Hence \(B(x, \tilde{\alpha}, t) \subseteq B(x, \tilde{\alpha}, t) \).

Thus proves that \(B(a, \alpha, t) \) is an open in \(A \). \[\square \]

4. **Conclusion**

Last three decades were very productive for the fuzzy mathematics and the recent literature has observed the fuzzy application in almost every direction of mathematics. In this paper a general analysis has been done open balls in intuitionistic fuzzy \(D \)-metric space. In future from this concept can be to extend in various spaces.

References

A STUDY ON CONCEPTS OF BALLS . . .

PG AND RESEARCH DEPARTMENT OF MATHEMATICS
GOVERNMENT ARTS COLLEGE, TRICHY-22
AFFILIATED TO BHARATHIDASAN UNIVERSITY
E-mail address: yahya_md@yahoo.com

DEPARTMENT OF MATHEMATICS
SRI KAILASH WOMENS COLLEGE
THALAIVASAL, TAMILNADU, INDIA
E-mail address: mathmb@gmail.com