LAX OPERATOR APPROACH FOR GLOBAL EXISTENCE AND UNIQUENESS CONDITION WITH KAC VAN-MOERBEKE HIERARCHY

VIPIN KUMAR¹, KAMAL KUMAR GOLA, PRASHANT KUMAR, AND PRADEEP KUMAR VERMA

ABSTRACT. By using a supersymmetric approach (communication approach), this paper gives the modified application of Toda hierarchy and Kac-Van Moerbeke hierarchy.

1. INTRODUCTION

In this paper we investigate the relation between Kac-Van Moerbeke hierarchy and Toda hierarchy, see [1–4]. Let $\varsigma(\phi) \in L^\infty(z, R)$ where $\varsigma(s, \phi) \neq 0$, $(s, \phi) \in z \times R$. Let the function $\phi \in R$ be differentiable and it divides into even and odd process of $\varsigma(\phi)$:

\[
\varsigma_e(s, \phi) = \varsigma(2s, \phi) \\
\varsigma_o(s, \phi) = \varsigma(2s + 1, \phi) \quad (s, \phi) \in z \times R.
\]

Let α be the bounded operator applying in $l^2(z)$.

\[
\alpha(\phi) = \varsigma_o(\phi)S^+ + \varsigma_e(\phi) \\
\alpha(\phi)^* = \varsigma_o^-(\phi)S^- + \varsigma_e(\phi).
\]

¹corresponding author

Key words and phrases. Toda hierarchy, Kac-Van Moerbeke hierarchy.

751
2. Main result

We have:
\[F_1(\phi) = \alpha(\phi)^* \alpha(\phi) \quad \text{and} \quad F_1(\phi) = \alpha(\phi) \alpha(\phi)^* \]
and define \(F_k(\phi) = a_k(\phi)S^+ + a_k^-(\phi)S^- + b_k(\phi) \).

If we take the values for \(k = 1, 2 \) we have:
\[
\begin{align*}
 a_1(\phi) &= \zeta_e(\phi)\zeta_o(\phi), \\
 b_1(\phi) &= \zeta_e(\phi)^2 + \zeta_o^-(\phi)^2, \\
 a_2(\phi) &= \zeta_e^+(\phi)\zeta_o(\phi), \\
 b_2(\phi) &= \zeta_e(\phi)^2 + \zeta_o(\phi)^2.
\end{align*}
\]

As we know, \(\zeta(s, \phi) = \zeta(s + 1, \phi) \) will be equivalent to:
\[
\begin{align*}
 \zeta_e(s, \phi) &= \zeta_e(s, \phi) - \zeta_e(sl, \phi), \\
 \bar{\zeta}_o(s, \phi) &= \zeta_e(sl + 1, \phi),
\end{align*}
\]
and hence
\[
\begin{align*}
 \bar{a}_1(\phi) &= a_2(\phi) \\
 \bar{b}_1(\phi) &= b_2(\phi) \\
 \bar{a}_2(\phi) &= a_1^+(\phi) \\
 \bar{b}_2(\phi) &= b_1^+(\phi).
\end{align*}
\]

Using Hamilton operator,
\[
\langle \delta_m, F^j_{2l} \rangle = \langle \delta_m, \alpha F^j_{1l} \rangle,
\]
we can write \(p_{2\beta}, q_{2\beta} \) in terms of \(p_{1\beta}, q_{1\beta} \).

When we solve the equation with \(m = n \) it gives:
\[
p_{2\beta + 1}(\phi) = \zeta_e(\phi)^2 p_{1\beta}(\phi) + \zeta_o(\phi)^2 p_{1\beta}(\phi) + q_{1\beta}(\phi),
\]
and for \(m = n + 1 \), we obtain
\[
q_{2\beta + 1}(\phi) - q_{1\beta + 1}(\phi) = \zeta(\phi)^2 \left[2\{\zeta_e^+(\phi)^2 p_{1\beta}(\phi) + \zeta_o(\phi)^2 p_{1\beta}(\phi) + q_{1\beta}(\phi) \} \right].
\]

Using the equation (2.1), we can get the two more solutions:
\[
\begin{align*}
 p_{1\beta + 1}(\phi) &= \zeta_e(\phi)^2 p_{2\beta}(\phi) + \zeta_o(\phi)^2 p_{2\beta}(\phi) + q_{2\beta}(\phi) \\
 q_{2\beta + 1}(\phi) - q_{1\beta + 1}(\phi) &= \zeta_e(\phi)^2 \left[-2\zeta_o(\phi)^2 p_{2\beta}(\phi) - \zeta_o(\phi)^2 p_{2\beta}(\phi) - q_{2\beta}(\phi) - q_{2\beta}(\phi) \right].
\end{align*}
\]

These relations will be very important for next steps.

We now explain matrix-valued operators \(D(\phi), B_{2r+2}(\phi) \) in \(l^2(Z, C^2) \) as follows:
\[
D(\phi) = \begin{bmatrix} 0 & \alpha(\phi)^* \\ \alpha(\phi) & 0 \end{bmatrix}
\]
and

\[(2.3)\quad B_{2r+2}(\phi) = \begin{bmatrix} A_{1,2r+2}(\phi) & 0 \\ 0 & A_{2,2r+2}(\phi) \end{bmatrix}\]

wherer ∈ \(N_0\). Here, \(A_{k,2r+2}(\phi)\) are defined as Lax operator. i.e.

\[A_{k,2r+2}(\phi) = -F_k(\phi)^{r+1} + \sum_{j=0}^{r} [2a_k(\phi)p_k,j(\phi)S^+ - q_{k,\beta}] F_k(\phi)^{\beta} + p_{k,r+1}.\]

The sequences \([p_{k,\beta}(s,\phi)]\) and \([q_{k,\beta}(s,\phi)]\), \(0 \leq j \leq r + 1\) are defined as Toda hierarchy. We choose the similar summation constants in \(A_{1,2r+2}(\phi)\) and \(A_{2,2r+2}(\phi)\). From equation (2.3), we have:

\[(2.4)\quad B_2(\phi) = \begin{bmatrix} \varsigma_e(\phi) \varsigma_o(\phi) S^+ - \varsigma_e^-(\phi) \varsigma_o^-(\phi) S^- & 0 \\ 0 & \varsigma_e^+(\phi) \varsigma_o(\phi) S^+ - \varsigma_e(\phi) \varsigma_o^-(\phi) S^- \end{bmatrix}.

Further, for the skew-symmetric operator \(A_{2r+2}(t)\) known as Lax operator, it holds:

\[\frac{d}{dt} F(\phi) - [A_{2r+2}(\phi), F(\phi)] = 0 \quad \phi \in R.\]

Using equation (2.4), we have:

\[\frac{d}{d\phi} D = [B_{2r+2}, D] = \begin{bmatrix} 0 & A_{1,2r+2}\alpha^* - \alpha^* A_{2,2r+2} \\ A_{2,2r+2}\alpha - \alpha A_{1,2r+2} & 0 \end{bmatrix}.

Taking \(F_1^\beta \alpha^* = \alpha^* F_2^\beta \) & \(S^- = \frac{1}{a_2} (F_2 - a_2 S^+ - b_2)\), we have:

\[
\alpha^* A_{2,2r+2} - A_{1,2r+2} \alpha^* = \sum_{j=1}^{r} \frac{1}{\varsigma_e} 2\varsigma_e^2 (p_{2,\beta} - p_{1,j}) + (q_{2,\beta} - q_{1,\beta}) S^+ F_2^{-j}
\]

\[
+ \sum_{j=1}^{r} \frac{1}{\varsigma_e} (q_{2,\beta+1} - q_{1,\beta+1}) + 2 [(a_1)^2 p_{1,j} - (a_2)^2 p_{2,\beta}] - \varsigma_o^2 (q_{2,\beta} - q_{1,\beta}) S^- + \varsigma_o (p_{2,\beta+1} - p_{1,j}) \quad (2.5)
\]

Simplifying \(\langle \delta_n, (F_1^\beta \alpha^* - \alpha^* F_2^\beta) \delta_n \rangle = 0\) explicitly gives that

\[q_{2,\beta} - q_{1,\beta} + 2\varsigma_e^2 (p_{2,\beta} - p_{1,\beta}) = 0.\]
Next, simplifying the equation (2.2) and (2.5) we get:
\[
(q_{2,\beta+1} - q_{1,\beta+1}) + 2 \left((a_1)^2 p_{1,\beta} - (a_2)^2 p_{2,\beta} \right) - \varsigma_\alpha^s (q_{2,\beta} - q_{1,\beta}) + \varsigma_\beta^s (q_{2,\beta} - q_{2,\beta}) = 0.
\]
Hence, we get:
\[
A_{1,2r+2} G^s - \alpha^s A_{2,2r+2} = -\varsigma_\alpha^s \left(p_{2,r+1} - p_{1,r+1} \right) S^r + \varsigma_\beta^s (p_{2,r+1} - p_{1,r+1}) = 0.
\]
As we know the equation
\[
(2.6) \quad \frac{d}{dt} D(\phi) - [B_{2r+2}(\phi), D(\phi)] = 0,
\]
will be equivalent to: \(KM_r(\varsigma) = (KM_r(\varsigma)_c), KM_r(\varsigma)_o) \),
\[
(2.7) \quad \Rightarrow \left(\frac{d}{d\phi} \varsigma_c - \varsigma_c (p_{2,r+1} - p_{1,r+1}) \right) = 0.
\]
Hence, the transformation shows that the equation for \(\varsigma_c \) and \(\varsigma_o \) are for one equation \(\varsigma \). More explicitly, combining \(p_k,\beta \) and \(q_k,\beta \) into the single sequence.

s.t. \[G_\beta(2s) = p_{1,\beta}(s) \]
\[G_\beta(2s + 1) = p_{2,\beta}(s) \]

respectively \(\begin{pmatrix} F_\beta(2s) = q_{1,\beta}(s) \\ F_\beta(2s + 1) = q_{2,\beta}(s) \end{pmatrix} \).

At the end we can write the equation (2.7) as
\[
KM_r(\varsigma) = \frac{d}{d\phi} \varsigma - \frac{d}{d\phi} \left(G_{r+1}^+ - G_{r+1} \right).
\]
By the lemma,
\[
(2.8) \quad q_{\beta+1} - q_{\beta+1} - 2 \left(a^2 p_\beta^+ - (a^2)^2 p_\beta^- \right) - b(q_\beta - q_\beta^-) = 0,
\]
we can see that \(G_\beta \) and \(F_\beta \) satisfy the relation \(G_0 = 1, \quad F_0 = c_1 \)
\[
2G_{\beta+1} - F_\beta - F_\beta^- - 2(\varsigma^2 + (\varsigma^-)^2)G_\beta = 0
\]
\[
F_{\beta+1} - F_{\beta+1}^- - 2[\left((\varsigma^+)^2 G_\beta^+ + (\varsigma^-)^2 G_\beta^- \right) - \left((\varsigma^2 + (\varsigma^-)^2) \right) (F_\beta - F_\beta^-)] = 0,
\]
(2.9)
where \(0 \leq \beta < r \). We finally got that here Toda Concept shifting \(r \in N_0 \) yield the Kac-van Moerbeke hierarchy (KMH).

This can be written as \(KM_r(\varsigma) = 0 \) and from equation (2.9), \(G_1 = \varsigma^2 + (\varsigma^-)^2 + c_1 \)
\[F_1 = 2(\varsigma^2 + (\varsigma^-)^2 + c_2) \]

Hence,
\[
KM_0(\varsigma) = \frac{d}{dt} \varsigma - \varsigma \left((\varsigma^2)^2 + (\varsigma^-)^2 \right) = 0
\]
\[KM_1(\varsigma) = \frac{d}{dt} \varsigma - \varsigma \left((\varsigma^+)^4 - (\varsigma^-)^4 + (\varsigma^+)^2 (\varsigma^+)^2 + (\varsigma^+)^2 \varsigma^2 - \varsigma^2(\varsigma^-)^2 - (\varsigma^-)^2(\varsigma^-)^2 \right) + c_1 (-\varsigma) \left((\varsigma^+)^2 - (\varsigma^-)^2 \right) = 0 \]

This Lax equation also equal to equation (2.6).

CONCLUSION

In this paper, we have discussed about the Kac-van Moerbeke hierarchy. By using a commutation application, we can say that the Kac-van Moerbeke hierarchy is a changed Toda hierarchy absolutely in the processing that the modified mKdVH is related to the KdVH. The relation between the TL hierarchy and its updated application will be the Commuting at initial stage by difference expressions of the KM hierarchy which would be given as Backlund transformation depended on the factorization of difference expressions.

REFERENCES

DEPARTMENT OF MATHEMATICS
FACULTY OF ENGINEERING
TEERTHANKER MAHAVEER UNIVERSITY
MORADABAD
E-mail address: drvipink.engineering@tmu.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
FACULTY OF ENGINEERING
TEERTHANKER MAHAVEER UNIVERSITY
MORADABAD
E-mail address: kkgolaa1503@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
FACULTY OF ENGINEERING
TEERTHANKER MAHAVEER UNIVERSITY
MORADABAD
E-mail address: prashant.engineering@tmu.ac.in

DEPARTMENT OF ELECTRICAL ENGINEERING
FACULTY OF ENGINEERING
TEERTHANKER MAHAVEER UNIVERSITY
MORADABAD
E-mail address: pradeep.engineering@tmu.ac.in