THE ULAM STABILITY OF FUNCTIONAL EQUATION IN MATRIX NORMED SPACES

R. MURALI\(^1\) AND V. VITHYA

ABSTRACT. This paper focuses on the stability results of quattuordecic functional equation in matrix normed spaces with the help of direct method and fixed point method and also we give an example for non-stability.

1. INTRODUCTION

\[
\begin{align*}
&f(x + 7y) - 14f(x + 6y) + 1001f(x + 3y) - 364f(x + 4y) + 91f(x + 5y) \\
&+ 1001f(x - 3y) + f(x - 7y) - 2002f(x + 2y) - 3432f(x) \\
&+ 3003f(x + y) + 3003f(x - y) - 364f(x - 4y) \\
&- 2002f(x - 2y) - 14f(x - 6y) + 91f(x - 5y) = 14!f(y),
\end{align*}
\]

\(^1\)corresponding author

2010 Mathematics Subject Classification. 39B52, 39B82, 46L07, 47H10, 47L25.

Key words and phrases. Stability, quattuordecic functional equation, matrix normed spaces, direct method, fixed point method.
where $14! = 87178291200$ in quasi-β normed spaces. In the last five years, some authors have established the stability of different types of functional equations in matrix normed spaces ([6], [15]). Being encouraged by the above result, we mainly aim at studying the stability results of quattuordecic functional equation (1.1) in matrix normed spaces by using both methods (direct and fixed point).

Through out this paper, we consider $(X, \|\cdot\|_{n})$ as matrix normed spaces and $(Y, \|\cdot\|_{n})$ as matrix Banach spaces. Here, n be a fixed non-negative integer.

We use the following abbreviation for a given mapping $f : X \to Y$, we define an operator $Df : X^2 \to Y$ and $Df_n : M_n(X)^2 \to M_n(Y)$ by

$\begin{align*}
Df(b, c) &= f(b + 7c) - 14f(b + 6c) + 91f(b + 5c) - 364f(b + 4c) + 1001f(b + 3c) \\
&\quad - 2002f(b + 2c) + 3003f(b + c) - 3432f(b) + 3003f(b - c) - 14f(b - 6c) \\
&\quad - 2002f(b - 2c) + 1001f(b - 3c) + 364f(b - 4c) + 91f(b - 5c) + 14f(b - 7c) - 14!f(c), \\
Df_n([x_{rs}], [y_{rs}]) &= f_n([x_{rs} + 7y_{rs}]) - 14f_n([x_{rs} + 6y_{rs}]) + 91f_n([x_{rs} + 5y_{rs}]) \\
&\quad - 364f_n([x_{rs} + 4y_{rs}]) + 1001f_n([x_{rs} + 3y_{rs}]) - 2002f_n([x_{rs} + 2y_{rs}]) \\
&\quad - 3432f_n([x_{rs}]) + 3003f_n([x_{rs} - y_{rs}]) - 2002f_n([x_{rs} - 2y_{rs}]) \\
&\quad + 1001f_n([x_{rs} - 3y_{rs}]) + 3003f_n([x_{rs} + y_{rs}]) - 364f_n([x_{rs} - 4y_{rs}]) \\
&\quad + 91f_n([x_{rs} - 5y_{rs}]) - 14f_n([x_{rs} - 6y_{rs}]) + f_n([x_{rs} - 7y_{rs}]) - 14!f_n([y_{rs}])
\end{align*}$

$\forall \ b, c \in X \text{ and all } x = [x_{rs}], y = [y_{rs}] \in M_n(X)$.

Theorem 2.1. Let $l \in \{1, -1\}$ be fixed and let δ be a real number with $0 < \delta < 1$. Suppose that the mapping $\zeta : X^2 \to [0, \infty)$ satisfies the inequality

$$\zeta(b, c) \leq 2^{14l}\delta\zeta \left(\frac{b}{2^l}, \frac{c}{2^l} \right),$$

for all $b, c \in X$. Let $f : X \to Y$ be an even mapping satisfying $f(0) = 0$ and

$$\|Gf_n([x_{rs}], [y_{rs}])\| \leq \sum_{r, s=1}^{n} \zeta([x_{rs}], [y_{rs}])$$

for all $x = [x_{rs}], y = [y_{rs}] \in M_n(X)$. Then there is a unique quattuordecic function $Q : X \to Y$ such that

$$\|f_n([x_{rs}]) - Q_n([x_{rs}])\|_n \leq \sum_{i,j=1}^{n} \delta^{\frac{1-i}{2}} \zeta^*(x_{rs})$$
Proof. Putting $n = 1$ in inequality (2.2), we obtain
\begin{equation}
\|Df(b,c)\| \leq \zeta(b,c)
\end{equation}

\forall b,c \in X. By utilizing ([12], Theorem 1), we have
\begin{equation}
\|f(2b) + 16384f(b)\| \leq \frac{2}{144}[\zeta(0,2b) + \zeta(7b,b) + 14\zeta(6b,b) + 91\zeta(5b,b)]
\end{equation}

\forall b \in X. For case $l = 1$ and $l = -1$, then we see that
\begin{equation}
\left\| f(b) - \frac{1}{2^{14l}}f(2^l b) \right\| \leq \frac{\delta\left(\frac{14l}{2^{14}}\right)}{2^{14}} \zeta^*(b)
\end{equation}

\forall b \in X. The generalized metric ρ defined on \mathcal{N} by

$$\rho(g,h) = \inf \left\{ \mu \in \mathcal{R}_+ : \|g(b) - h(b)\| \leq \mu \zeta^*(b), \forall \ b \in X \right\},$$

where $\mathcal{N} = \{ g : X \to Y \}$. Then it is simply to verify that (\mathcal{N}, ρ) is a generalized complete metric space (see [7]).

Let us define $\mathcal{T} : \mathcal{N} \to \mathcal{N}$ by $\mathcal{T}g(b) = \frac{1}{2^{14l}}g(2^l b)$ for all $b \in X$.

Given $g,h \in \mathcal{N}$, let $\mu \in [0, \infty]$ is an arbitrary constant with $\rho(g,h) \leq \mu$. From the definition, we have $\|g(b) - h(b)\| \leq \mu \zeta^*(b) \forall b \in X$. Therefore,

$$\left\| \mathcal{T}g(b) - \mathcal{T}h(b) \right\| = \left\| \frac{1}{2^{14l}}g(2^l b) - \frac{1}{2^{14l}}h(2^l b) \right\| \leq \delta \mu \zeta^*(b).$$

Hence, $\rho(\mathcal{T}g, \mathcal{T}h) \leq \delta \mu \leq \delta \rho(g,h)$ for all $g,h \in \mathcal{N}$. Thus, \mathcal{T} is a strictly contractive operator on \mathcal{N} with $L = \delta$. By (2.6), we get

$$\rho(f, \mathcal{T}f) \leq \frac{\delta\left(\frac{14l}{2^{14}}\right)}{2^{14}}.$$

Applying ([3], Theorem 2.2), we obtain the existence of a fixed point of \mathcal{T}, that is, the existence of a function Q satisfies $Q(2^l b) = 2^{14l}Q(b) \forall b \in X$. Moreover, $\rho(\mathcal{T}^k f, Q) \to 0$, which implies $Q(b) = \lim_{k \to \infty} \mathcal{T}^k f(b) = \frac{1}{2^{14kl}}f(2^{kl} b)$ for all $b \in X$.

THE ULAM STABILITY OF FUNCTIONAL EQUATION...
Also, \(\rho(f, Q) \leq \frac{1}{1-\delta} \rho(f, T f) \) implies the following inequality

\[
(2.7) \quad \| f(b) - Q(b) \| \leq \frac{\delta^{\frac{1}{14}}}{2^{14}(1-\delta)} \zeta^*(b) \quad \forall \ b \in X.
\]

From (2.1) and (2.4), we have

\[
\| DQ(b, c) \| = \lim_{k \to \infty} \frac{1}{2^{14k}} \| Df(2^k b, 2^k c) \| = 0 \quad \text{for all } b, c \in X.
\]

By using (6), Lemma 2.1 and (2.7), we arrive at (2.3). Hence, \(Q \) is a quattuordecic function satisfying (2.3).

\[\square\]

Theorem 2.2. Let \(l = \{1, -1\} \) and let \(\zeta : X^2 \to [0, \infty) \) be a function satisfies

\[
\sum_{m=0}^{\infty} \frac{\zeta(2^m b, 2^m c)}{2^{14m}} < +\infty
\]

and \(\lim_{m \to \infty} \frac{\zeta(2^m b, 2^m c)}{2^{14m}} = 0 \) for all \(b, c \in X \). Let \(f : X \to Y \) be a mapping satisfies (2.2). Then there is a unique quattuordecic function \(Q : X \to Y \) such that

\[
(2.8) \quad \| f_n([x_{rs}]) - Q_n([x_{rs}]) \|_n \leq \sum_{i,j=1}^{n} \frac{1}{2^{14}} \left(\sum_{m=0}^{\infty} \frac{\zeta^*(2^m x_{rs})}{2^{14m}} \right)
\]

for all \(x = [x_{rs}] \in M_n(X) \), where

\[
\zeta^*(2^m x_{rs}) = \frac{1}{2^{14}} \left[\zeta(0, 2^m x_{rs}) + \zeta(2^m x_{rs}, 2^m x_{rs}) + 14 \zeta(2^m x_{rs}, 2^m x_{rs}) + 2^m x_{rs} \right] + 14(2^m x_{rs}, 2^m x_{rs})
\]

\[
+ 3458 \zeta(3^m x_{rs}, 2^m x_{rs}) + 6370 \zeta(2^m x_{rs}, 2^m x_{rs})
\]

\[
+ 9428 \zeta(2^m x_{rs}, 2^m x_{rs}) + 106 \zeta(6^m x_{rs}, 2^m x_{rs})
\]
For case \(l = 1 \) and \(l = -1 \), by induction on any positive integer \(q \), we have

\[
(2.11) \quad \left\| \frac{f(2^{q}lb)}{2^{14q}} - f(b) \right\| \leq \frac{1}{2^{14}} \sum_{m=\left(\frac{l+1}{2}\right)}^{q-1} \zeta^*(\frac{2^{ml}b}{2^{14ml}}).
\]

To show that the sequence \(\frac{f(2^{q}lb)}{2^{14q}} \) is convergence. Putting \(b = 2^{ml}b \) in (2.11) and divide it by \(2^{14ml} \), for any positive integers \(q \) and \(m \), we get

\[
\left\| \frac{f(2^{q+m}lb)}{2^{14l(q+m)}} - \frac{f(2^{ml}b)}{2^{14ml}} \right\| = \left\| \frac{f(2^{q}2^{ml}b)}{2^{14l(q+m)}} - \frac{f(2^{ml}b)}{2^{14ml}} \right\|
\leq \frac{1}{2^{14ml}} \frac{1}{2^{14}} \sum_{i=0}^{q-1} \zeta^* \left(\frac{2^{i}2^{ml}b}{2^{14i}} \right) \to 0,
\]
as \(m \to \infty \) for all \(b \in X \). Therefore, the sequence \(\frac{f(2^{q}lb)}{2^{14q}} \) is Cauchy in \(Y \) and so it converges. Therefore, the mapping \(Q \) is defined by \(Q(b) = \lim_{q \to \infty} \frac{f(2^{q}lb)}{2^{14q}} \) for all \(b \in X \). It follows from the above equation and (2.4) that

\[
\|DQ(b, c)\| = \lim_{k \to \infty} \frac{1}{2^{14k}} \|Df(2^{k}lb, 2^{k}c)\| \leq \lim_{k \to \infty} \frac{1}{2^{14k}} \zeta(2^{k}lb, 2^{k}c) = 0
\]
for all \(b, c \in X \). So, the mapping \(Q \) is quattuordecic. Hence \(Q \) satisfies (1.1). By Lemma 2.1 in [6] and (2.11), we can get (2.8). Hence \(Q : X \to Y \) is a unique quattuordecic function satisfying (2.8).

Corollary 2.1. Let \(l = \{1, -1\} \) be fixed and let \(t, \nu \in \mathcal{R}_+ \) with \(t \neq 14 \). Suppose that \(f : X \to Y \) is an even mapping such that

\[
\|Df_n([x_{rs}], [y_{rs}])\|_n \leq \sum_{r,s=1}^{n} \nu \|x_{rs}\|^t + \|y_{rs}\|^t,
\]
for all \(x = [x_{rs}], y = [y_{rs}] \in M_n(X) \). Then there is a unique quattuordecic function \(Q : X \to Y \) such that

\[
\|f_n([x_{rs}]) - Q_n([x_{rs}])\|_n \leq \sum_{r,s=1}^{n} \nu_0 \|x_{rs}\|^t
\]
for all \(x = [x_{rs}] \in M_n(X) \), where \(\nu_0 = \frac{2\nu}{14} \left[11195 + 2002.5(2^t) + 1001(3^t) + 364(4^t) + 91(5^t) + 14(6^t) + 7^t \right] \).

Proof. The proof is identical to that of Theorem 2.1 and Theorem 2.2. \(\square \)
Corollary 2.2. Let \(l = \{1, -1\} \) be fixed and let \(t, \nu \in \mathbb{R}_+ \) with \(t = d + e \neq 14 \). Suppose that \(f : X \to Y \) is an even mapping such that

\[
\|Df_n([x_{rs}], [y_{rs}])\|_n \leq \sum_{r,s=1}^{n} \nu (\|x_{rs}\|^{d} \cdot \|y_{rs}\|^{e})
\]

for all \(x = [x_{rs}], y = [y_{rs}] \in M_n(X) \). Then there is a unique quattuordecic function \(Q : X \to Y \) such that

\[
\|f_n([x_{rs}]) - Q_n([x_{rs}])\|_n \leq \sum_{r,s=1}^{n} \nu \left(\frac{\nu_1}{2^{14} - 2^{t}} \right) \|x_{rs}\|^t
\]

for all \(x = [x_{rs}] \in M_n(X) \), where \(\nu_1 = \frac{2\nu}{14!} \left[3003 + 2002(2^d) + 1001(3^d) + 364(4^d) + 91(5^d) + 14(6^d) + 7^d \right] \).

\[\text{Proof.} \ \text{The proof is identical to that of Theorem 2.1 and Theorem 2.2.} \quad \square\]

Corollary 2.3. Let \(l = \{1, -1\} \) be fixed and let \(t, \nu \in \mathbb{R}_+ \) with \(t = d + e \neq 14 \). Suppose that \(f : X \to Y \) is an even mapping such that

\[
\|Df_n([x_{rs}], [y_{rs}])\|_n \leq \sum_{r,s=1}^{n} \nu (\|x_{rs}\|^{d} \cdot \|y_{rs}\|^{e} + \|x_{rs}\|^t + \|y_{rs}\|^t)
\]

for all \(x = [x_{rs}], y = [y_{rs}] \in M_n(X) \). Then there is a unique quattuordecic function \(Q : X \to Y \) such that

\[
\|f_n([x_{rs}]) - Q_n([x_{rs}])\|_n \leq \sum_{r,s=1}^{n} \nu \left(\frac{\nu_2}{2^{14} - 2^{t}} \right) \|x_{rs}\|^t
\]

for all \(x = [x_{rs}] \in M_n(X) \), where

\[
\nu_2 = \frac{2\nu}{14!} \left[14198 + 2002.5(2^t) + 2002(2^d) + 1001(3^t + 3^d) + 364(4^t + 4^d) \\
+ 91(5^t + 5^d) + 14(6^t + 6^d) + 7^t + 7^d \right].
\]

\[\text{Proof.} \ \text{The proof is identical to that of Theorem 2.1 and Theorem 2.2.} \quad \square\]

3. Counter-example

Next we will check that the functional equation (1.1) is not stable for \(t = 14 \) by taking \(n = 1 \) in Corollary 2.1.
Example 1. Let \(f : \mathcal{R} \to \mathcal{R} \) be a function and let \(\zeta : \mathcal{R} \to \mathcal{R} \) be a function for some constant \(\nu > 0 \) defined by \(\zeta(b) = \nu b^{14} \), if \(|b| < 1 \), \(\zeta(b) = \nu \), if \(|b| \geq 1 \) and \(f(b) = \sum_{n=0}^{\infty} \frac{\zeta(2^n b)}{2^{2n}} \) for all \(b \in \mathcal{R} \). Then \(f \) satisfies the following inequality

\[
(3.1) \quad |G f(b, c)| \leq \frac{(87178307580) |b|^{14} + |c|^{14}}{16383} \quad \text{for all } b, c \in \mathcal{R}.
\]

Proof. Obviously, \(f \) is bounded by \(\frac{16384c}{16384} \) on \(\mathcal{R} \). Next we have to verify that the function \(f \) satisfies (3.1). If \(|b|^{14} + |c|^{14} = 0 \) or \(|b|^{14} + |c|^{14} \geq \frac{1}{2^7}, \) then

\[
|G f(b, c)| = \frac{(87178307580) |b|^{14} + |c|^{14}}{16383}.
\]

Suppose that \(0 < |b|^{14} + |c|^{14} < \frac{1}{2^7} \), then there is a non-negative integer \(k \), \(\frac{1}{2^{14n+17}} < |b|^{14} + |c|^{14} < \frac{1}{2^{7n}}, \) so that \(2^{14(k-1)} b^{14} < \frac{1}{2^{7n}}, 2^{14(k-1)} c^{14} < \frac{1}{2^{7n}} \) and \(2^n(b), 2^n(c), 2^n(b \pm 7c), 2^n(b \pm 6c), 2^n(b \pm 5c), 2^n(b \pm 4c), 2^n(b \pm 3c), 2^n(b \pm 2c), 2^n(b \pm c) \in (-1, 1). \) Hence, \(G \psi(2^n b, 2^n c) = 0 \) for \(n = 0, 1, 2, \ldots, k - 1. \) Since \(\frac{1}{2^{14n+17}} \leq |b|^{14} + |c|^{14} < \frac{1}{2^{7n}}, \) thus

\[
|G f(b, c)| \leq \sum_{n=0}^{\infty} \frac{1}{2^{14n}} G \psi(2^n b, 2^n c) \leq \frac{(87178307580) |b|^{14} + |c|^{14}}{16383} \quad \text{for all } b, c \in \mathcal{R}.
\]

Therefore, \(f \) satisfies (3.1) for all \(b, c \in \mathcal{R}. \)

\[\square\]

ACKNOWLEDGMENT

The authors are very grateful to the referees for their valuable suggestions and opinions.

REFERENCES

PG AND RESEARCH DEPARTMENT OF MATHEMATICS, SACRED HEART COLLEGE (AUTONOMOUS), TIRUPATTUR - 635 601, TAMIL NADU, INDIA

Email address: shcrmurali@yahoo.co.in

PG AND RESEARCH DEPARTMENT OF MATHEMATICS, SACRED HEART COLLEGE (AUTONOMOUS), TIRUPATTUR - 635 601, TAMIL NADU, INDIA

Email address: viprutha26@gmail.com