FUZZY α-TRANSLATIONS AND FUZZY β-MULTIPLICATIONS OF Z-ALGEBRAS

S. SOWMIYA 1 AND P. JEYALAKSHMI

ABSTRACT. In this article, fuzzy α-translations, fuzzy extensions and fuzzy β-multiplications of fuzzy Z-Subalgebras (fuzzy Z-ideals) of Z-algebras are initiated and some interesting results are proved.

1. INTRODUCTION

A new class of algebra that arise from the propositional calculi is the Z-algebra introduced by Chandramouleeswaran et al. [1] in the year 2017. This algebra differs from the BCK, BCI, BF-algebras [2–5] and so on.

Zadeh [9] in the year 1965, introduced the notion of fuzzy sets as the generalization of set theory to deal with the problems of uncertainty under real physical world. Since then many authors fuzzified different algebraic structures. The idea of fuzzy translations and fuzzy multiplications have been discussed by Lee et al. [6]. Similar concept have been discussed in BF-algebras by Chandramouleeswaran et al. [2]. In [7, 8] we have launched the notion of fuzzy Z-Subalgebras and fuzzy Z-ideals respectively. In this paper, we examine fuzzy α-translations and fuzzy β-multiplications of fuzzy Z-subalgebras and fuzzy Z-ideals in Z-algebras.

1corresponding author

2010 Mathematics Subject Classification. 03B47, 03B52.

Key words and phrases. fy Z-Salgr, fy Z-idl, fy α- tlt, fy Z-Salgr ext, fy β- mlc, fy Z-idl ext.
2. Preliminaries

Now we collect the necessary definitions from the articles ([1], [7], [8], [9]).

Definition 2.1. [1] A Z-algebra (Z-algr) \((J, *, 0)\) is a nonempty set \(J\) with constant 0 and a binary operation \(*\) satisfying the following conditions:

1. \((Z1)\) \(u \ast 0 = 0\)
2. \((Z2)\) \(0 \ast u = u\)
3. \((Z3)\) \(u \ast u = u\)
4. \((Z4)\) \(u \ast \omega = \omega \ast u\) when \(u \neq 0\) and \(\omega \neq 0\) \(\forall u, \omega \in J\).

Definition 2.2. [9] A fuzzy set (fy set) \(A\) in a set \(J\) is defined by a membership function (msfn) \(\mu_A: J \rightarrow [0, 1]\).

Definition 2.3. [7] Let \((J, *, 0)\) be a Z-algr. A fy set \(A\) in \(J\) with msfn \(\mu_A\) is said to be a fy Z-Subalgebra (fy Z-Salgr) of a Z-algr \(J\) if \(\mu_A(u \ast \omega) \geq \min\{\mu_A(u), \mu_A(\omega)\}\) \(\forall u, \omega \in J\).

Definition 2.4. [8] Let \((J, *, 0)\) be a Z-algr. A fy set \(A\) in \(J\) with msfn \(\mu_A\) is said to be a fy Z-ideal (fy Z-idl) of a Z-algr \(J\) if:

1. \((i)\) \(\mu_A(0) \geq \mu_A(u)\);
2. \((ii)\) \(\mu_A(u) \geq \min\{\mu_A(u \ast \omega), \mu_A(\omega)\}\) \(\forall u, \omega \in J\).

3. Fuzzy \(\alpha\)-Translations and Fuzzy \(\beta\)-Multiplications of Fuzzy Z-Subalgebras (Fuzzy Z-ideals)

Hereafter, \((J, *, 0)\) denotes a Z-algr; and \(1 - \sup\{\mu_A(u) | u \in J\}\) is denoted by \(T\).

Definition 3.1. Let \(A\) be a fy set of a Z-algr \(J\) and let \(\alpha \in [0, T]\). A fy \(\alpha\)-translation (fy \(\alpha\)-tlt) \(A^T_\alpha\) of \(A\) with msfn \(\mu_{A^T_\alpha}: J \rightarrow [0, 1]\) is defined by \(\mu_{A^T_\alpha}(u) = \mu_A(u) + \alpha\), \(\forall u \in J\).
Example 1.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>s</th>
<th>p</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>s</td>
<td>p</td>
<td>g</td>
</tr>
<tr>
<td>s</td>
<td>0</td>
<td>s</td>
<td>g</td>
<td>p</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>g</td>
<td>p</td>
<td>s</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>p</td>
<td>s</td>
<td>g</td>
</tr>
</tbody>
</table>

From Table 1, \(J = \{0, s, p, g\} \) is a Z-algr. If a fy set \(A \) of \(J \) is given in Table 2, then \(A^T_{0.1} \) is a fy 0.1- tlt of \(A \).

Theorem 3.1. Let \(A \) be a fy set of Z-algr \(J \) and \(\alpha \in [0, T] \). Then the fy \(\alpha \)- tlt \(A^T_{\alpha} \) of \(A \) is a fy Z-Salgr of \(J \) \(\iff \) \(A \) is a fy Z-Salgr of \(J \).

Definition 3.2. When \(A_1 \) and \(A_2 \) are fy sets of Z-algr \(J \), \(A_2 \) is called a fy Z-Salgr extension (fy Z-Salgr ext) of \(A_1 \) if:

- \((S_1) \) \(A_2 \) is a fy ext of \(A_1 \) \((\mu_{A_1}(u) \leq \mu_{A_2}(u) \ \forall \ u \in J) \).
- \((S_1) \) If \(A_1 \) is a fy Z-Salgr of \(J \), then \(A_2 \) is a fy Z-Salgr of \(J \).

It follows from the definition of fy \(\alpha \)-tlt, \(\mu_{A^T_{\alpha}}(u) \geq \mu_A(u) \ \forall u \in J \). This proves the following propositions.

Proposition 3.1. Let \(A \) be a fy Z-Salgr of a Z-algr \(J \) and \(\alpha \in [0, T] \). Then the fy \(\alpha \)-tlt \(A^T_{\alpha} \) of \(A \) is a fy Z-Salgr ext of \(A \).

Proposition 3.2. Arbitrary intersection of fy Z-Salgr exts of a fy set \(A \) of a Z-algr \(J \) is a fy Z-Salgr ext of \(A \).

Definition 3.3. For a fy set \(A \) of a Z-algr \(J \), \(\alpha \in [0, T] \) and \(t \in [0, 1] \) with \(t \geq \alpha \), we define the upper level subset of \(A^T_{\alpha} \) as \(U_{\alpha}(\mu_A; t) = \{ u \in J | \mu_A(u) \geq t - \alpha \} \).

Proposition 3.3. Let \(A \) be a fy set of a Z-algr \(J \) and \(\alpha \in [0, T] \). Then the fy \(\alpha \)-tlt \(A^T_{\alpha} \) of \(A \) is a fy Z-Salgr of \(J \) \(\iff \) \(U_{\alpha}(\mu_A; t) \) is a Z-Salgr of \(J \), \(\forall t \in Im(A) \) with \(t \geq \alpha \).

Proposition 3.4. Let \(A \) be a fy Z-Salgr of a Z-algr \(J \) and \(\alpha, \lambda \in [0, T] \). If \(\alpha \geq \lambda \), then the fy \(\alpha \)-tlt \(A^T_{\alpha} \) of \(A \) is a fy Z-Salgr ext of the fy \(\lambda \)-tlt \(A^T_{\lambda} \) of \(A \).
Proposition 3.5. Let A be a fy Z-Salgr of a Z-algr J and $\lambda \in [0, T]$. For every fy Z-Salgr ext B of the fy λ-tlt A^λ_T of A, $\exists \alpha \in [0, T] \ni \alpha \geq \lambda$ and B is a fy Z-Salgr ext of the fy α-tlt A^α_T of A.

Definition 3.4. Let A be a fy set of a Z-algr J and $\beta \in (0, 1]$. A fy β-multiplication (fy β-mlc) A^M_β of A with msfn $\mu_{A^M_\beta} : J \to [0, 1]$ is defined by $\mu_{A^M_\beta}(u) = \beta \cdot \mu_A(u) \forall u \in J$.

Example 2. Consider a Z-algr $J=\{0, s, p, g\}$ and a fy Z-Salgr A of J as in Example 3.2. Then A^M_0 is a fy Z-Salgr of A.

Proposition 3.6. If A is a fy Z-Salgr of a Z-algr J, then the fy β-mlc A^M_β of A is a fy Z-Salgr of J for all $\beta \in (0, 1]$.

Proposition 3.7. For any fy set A of Z-algr J, A is a fy Z-Salgr of J iff A^M_β is a fy Z-Salgr of J, $\forall \beta \in (0, 1]$.

Proposition 3.8. Let A be a fy set of a Z-algr J, $\alpha \in [0, T]$ and $\beta \in (0, 1]$. Then every fy α-tlt A^α_T of A is a fy Z-Salgr ext of the fy β-mlc A^M_β of A.

Proof. A^α_T is a fy ext of A^M_β, since

$$\mu_{A^\alpha_T}(u) = \mu_A(u) + \alpha \geq \mu_A(u) \geq \beta \cdot \mu_A(u) = \mu_{A^M_\beta}(u) \forall u \in J.$$

If A^M_β is a fy Z-Salgr of J. Then A is a fy Z-Salgr of J by Proposition 3.14. It follows from Theorem 3.3 that A^α_T is a fy Z-Salgr of J $\forall \alpha \in [0, T]$. \square

Theorem 3.2. Let A be a fy set of Z-algr J and $\alpha \in [0, T]$. Then the fy α-tlt A^α_T of A is a fy Z-idl of J \iff A is a fy Z-idl of J.

Definition 3.5. When A_1, A_2 are fy sets of Z-algr J, A_2 is called a fy Z-idl ext of A_1 if:

(I_1) A_2 is a fy ext of A_1.

(I_2) If A_1 is a fy Z-idl of J, then A_2 is a fy Z-idl of J.

Proposition 3.9. Let A be a fy Z-idl of a Z-algr J and $\alpha, \gamma \in [0, T]$. If $\alpha \geq \gamma$, then the fy α-tlt A^α_T of A is a fy Z-idl ext of the fy γ-tlt A^γ_T of A.

Proposition 3.10. Let A be a fy Z-idl of a Z-algr J and $\gamma \in [0, T]$. For every fy Z-idl ext B of the fy γ-tlt A^γ_T of A, $\exists \alpha \in [0, T] \ni \alpha \geq \gamma$ and B is a fy Z-idl ext of the fy α-tlt A^α_T of A.
Proposition 3.11. Let A be a fuzzy Z-idl of a Z-algr J and $\alpha \in [0, T]$. Then the fuzzy α-tilt A^T_α of A is a fuzzy Z-idl ext of A.

Proposition 3.12. Arbitrary intersection of fuzzy Z-idl ext of a fuzzy Z-idl A of a Z-algr J is also a fuzzy Z-idl ext of A.

Theorem 3.3. For $\alpha \in [0, T]$, let A^T_α be the fuzzy α-tilt of a fuzzy set A of a Z-algr J. Then A^T_α is a fuzzy Z-idl of J $\iff \forall t \in \text{Im}(A), t > \alpha \Rightarrow U_\alpha(\mu_A; t)$ is a fuzzy Z-idl of J.

Proposition 3.13. For any fuzzy set A of a Z-algr J, A is a fuzzy Z-idl of J $\iff \forall \beta \in (0, 1]$, the fuzzy β-mhc A^M_β of A is a fuzzy Z-idl of J.

Proposition 3.14. Let A be a fuzzy set of a Z-algr J, $\alpha \in [0, T]$ and $\beta \in (0, 1]$. Then every fuzzy α-tlc A^T_α of A is a fuzzy Z-idl ext of the fuzzy β-mhc A^M_β of A.

4. Conclusion

In this article, we have introduced fuzzy α-tilts and fuzzy β-multiplcations of Z-algrs and discussed their properties. We extend this concept in our research work.

Acknowledgment

Authors wish to thank Dr. M. Chandramouleeswaran, Professor and Head, PG Department of Mathematics, Sri Ramanas College of Arts and Science for Women, Aruppukottai, for his valuable suggestions to improve this paper a successful one.

References

DEPARTMENT OF MATHEMATICS
AVINASHILINGAM INSTITUTE FOR HOME SCIENCE AND HIGHER EDUCATION FOR WOMEN
COIMBATORE-43, TAMIL NADU, INDIA
Email address: vinayagarphd@gmail.com

DEPARTMENT OF MATHEMATICS
AVINASHILINGAM INSTITUTE FOR HOME SCIENCE AND HIGHER EDUCATION FOR WOMEN
COIMBATORE-43, TAMIL NADU, INDIA
Email address: jeyapalanmaths@gmail.com