\(\delta^*g\alpha\)-CLOSED SETS IN TOPOLOGICAL SPACES

K. DAMODHARAN AND M. VIGNESHWARAN

ABSTRACT. In this paper, the authors introduce a new class of sets called \(\delta^*g\alpha\)-closed set in Topological spaces. Some of their properties and characterizations are investigated. Also we introduce and study a new class of space namely \(\alpha\delta T^*_{1/2}g\alpha\)-space, \(\delta T^*_{c}\)-space, \(\delta^*T_{1/2}\)-space and \(\delta\alpha T^*_{c}\)-space.

1. INTRODUCTION

Levine [13], Mashhour et al. [2], Njastad [15] and Velicko [14] introduced semi-open sets, pre-open sets, \(\alpha\)-open sets and \(\delta\)-closed sets respectively. Levine [12] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Bhattacharya and Lahiri [16], Arya and Nour [17], Maki et al [6,7], Dontchev and Ganster [8] introduced generalized semi-closed (briefly gs-closed) sets, \(\alpha\)-generalized closed (briefly \(\alpha\)g-closed) sets and \(\delta\)-generalized closed (briefly \(\delta\)g-closed) sets respectively. M.Vigneshwaran and R.Devi [10] introduced \(*\)generalized \(\alpha\)-closed (briefly \(*\)g\(\alpha\)-closed) sets. The purpose of this paper is to define a new class of closed sets called \(\delta^*g\alpha\)-closed sets and also we obtain some basic properties of \(\delta^*g\alpha\) closed sets in topological spaces. Applying this set, we obtain some new spaces such as \(\alpha\delta T^*_1g\alpha\)-space, \(\delta T^*_c\)-space, \(\delta^*T_{1/2}\)-space and \(\delta\alpha T^*_c\)-space.

\(^1\)corresponding author

2010 Mathematics Subject Classification. 54Dxx.
Key words and phrases. \(\delta^*g\alpha\)-closed set, \(\alpha\delta T^*_1g\alpha\)-space, \(\delta T^*_c\)-space, \(\delta^*T_{1/2}\)-space and \(\delta\alpha T^*_c\)-space.
Throughout this paper \((X, \tau)\) (or simply \(X\)) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset \(A\) of \(X\), \(\text{cl}(A)\), \(\text{int}(A)\) and \(X - A\) denote the closure of \(A\), the interior of \(A\) and the complement of \(A\) respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset \(A\) of \((X, \tau)\) is said to be

(i) semi-open set \([13]\) if \(A \subseteq \text{cl}(\text{int}(A))\).

(ii) pre-open set \([2]\) if \(A \subseteq \text{int}(\text{cl}(A))\).

(iii) semi-preopen set \([1]\) if \(A \subseteq \text{cl}(\text{int}(\text{cl}(A)))\).

(iv) \(\alpha\)-open set \([15]\) if \(A \subseteq \text{int}(\text{cl}(\text{int}(A)))\).

(v) regular open set \([11]\) if \(A = \text{int}(\text{cl}(A))\).

The complement of a semi-open (resp. pre-open, \(\alpha\)-open, regular open) set is called semi-closed (resp. semi-closed, \(\alpha\)-closed, regular closed).

Definition 2.2. The \(\delta\)-interior \([14]\) of a subset \(A\) of \(X\) is the union of all regular open set of \(X\) contained in \(A\) and is denoted by \(\text{Int}_\delta(A)\). The subset \(A\) is called \(\delta\)-open \([14]\) if \(A = \text{Int}_\delta(A)\), i.e. a set is \(\delta\)-open if it is the union of regular open sets. The complement of a \(\delta\)-open is called \(\delta\)-closed. Alternatively, a set \(A \subseteq (X, \tau)\) is called \(\delta\)-closed \([14]\) if \(A = \text{cl}_\delta(A)\), where

\[
\text{cl}_\delta(A) = \{ x \in X : \text{int} (\text{cl} (U)) \neq \emptyset, U \in \tau \text{ and } x \in U \}.
\]

Definition 2.3. A subset \(A\) of \((X, \tau)\) is called

(i) a generalized closed (briefly \(g\)-closed) set \([12]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open set in \((X, \tau)\).

(ii) a generalized semi-closed (briefly \(gs\)-closed) set \([17]\) if \(\text{scl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open set in \((X, \tau)\).

(iii) a \(\alpha\)-generalized closed (briefly \(\alpha g\)-closed) set \([6]\) if \(\alpha \text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open set in \((X, \tau)\).

(iv) a \(\delta\)-generalized closed (briefly \(\delta g\)-closed) set \([8]\) if \(\text{cl}_\delta(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open set in \((X, \tau)\).

(v) a generalized preclosed (briefly \(gp\)-closed) set \([5]\) if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open set in \((X, \tau)\).

(vi) a generalized semi-preclosed (briefly \(gsp\)-closed) set \([3]\) if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open set in \((X, \tau)\).
(vii) a *generalized α-closed (briefly *gα-closed) set [10] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(g\alpha \)-open set in \((X, \tau)\).

(viii) a generalized-δ closed (briefly \(g\delta \)-closed) set [4] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\delta \)-open set in \((X, \tau)\).

(ix) a \(\delta \)-generalized*-closed (briefly \(\delta g^* \)-closed) set [21] if \(\text{cl}_{\delta}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\delta \)-open set in \((X, \tau)\).

(x) a \(\delta \)-generalized-δ semi closed (briefly \(g\delta s \)-closed) set [9] if \(\text{scl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\delta \)-open set in \((X, \tau)\).

(xi) a \(\delta \)-generalized b-closed (briefly \(\delta gb \)-closed) set [19] if \(\text{bcl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\delta \)-open set in \((X, \tau)\).

The complement of a \(g \)-closed (resp. \(gs \)-closed, \(\alpha g \)-closed, \(\delta g \)-closed, \(gp \)-closed, \(gsp \)-closed, \(g\delta \)-closed, \(g\delta^* \)-closed, \(g\delta s \)-closed and \(\delta gb \)-closed) set is called \(g \)-open (resp. \(gs \)-open, \(\alpha g \)-open, \(\delta g \)-open, \(gp \)-open, \(gsp \)-open, \(g\delta \)-open, \(g\delta^* \)-open, \(g\delta s \)-open and \(\delta gb \)-open).

Definition 2.4. A space \((X, \tau)\) is called a

(i) \(T_{1/2} \)-space [12] if every \(g \)-closed set in it is closed.

(ii) \(T_{3/4} \)-space [8] if every \(\delta g \)-closed set in it is \(\delta \)-closed.

(iii) \(\delta T_{3/4} \)-space [18] if every \(g\delta s \)-closed set in it is \(\delta \)-closed.

(iv) \(\delta T_{\delta gb} \)-space [20] if every \(\delta gb \)-closed set in it is \(\delta \)-closed.

(v) \(\alpha T_{\delta} \)-space [7] if every \(\alpha g \)-closed set in it is \(g \)-closed.

3. Properties of \(\delta^*g\alpha \)-closed sets in Topological Spaces

Definition 3.1. A subset \(A \) of a space \((X, \tau)\) is called \(\delta^*g\alpha \)-closed if \(\text{cl}_{\delta}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(\ast g\alpha \)-open set in \((X, \tau)\).

Theorem 3.1. Every \(\delta \)-closed set is \(\ast g\alpha \)-closed.

Proof. Let \(A \) be \(\delta \)-closed and \(U \) be any \(g\alpha \)-open set containing \(A \). Since \(A \) is \(\delta \)-closed, \(\text{cl}_{\delta}(A) = A \). Therefore \(\text{cl}_{\delta}(A) \subseteq A \subseteq U \). We know that \(\text{cl}(A) \subseteq \text{cl}_{\delta}(A) \subseteq U \). Hence \(A \) is \(\ast g\alpha \)-closed. \(\square \)

Theorem 3.2. Every \(\delta \)-closed set is \(\delta^*g\alpha \)-closed set. Converse is not true is showed through an example.
Proof. Let $A \subseteq U$ and U is $^{*}g_{\alpha}$-open set. Since A is δ-closed $\text{cl}_{\delta}(A) = A$, then $\text{cl}_{\delta}(A) \subseteq U$ therefore A is $^{*}g_{\alpha}$-closed set. □

Example 1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\} , \{b\} , \{a, b\} , \{b, c\} \}$; Here $\{a, c\}$ is $^{*}g_{\alpha}$-closed but not δ-closed in (X, τ).

Theorem 3.3. Every $^{*}g_{\alpha}$-closed set is g_{α}-closed. Converse is not true is showed through an example.

Proof. Let $A \subseteq U$ and U is open set. Since every open set is $^{*}g_{\alpha}$-open[9], then U is $^{*}g_{\alpha}$-open set. Since A is $^{*}g_{\alpha}$-closed, then $\text{cl}_{\delta}(A) \subseteq U$. But $\text{cl}(A) \subseteq \text{cl}_{\delta}(A)$, then $\text{cl}(A) \subseteq U$, Therefore A is g_{α}-closed set. □

Example 2. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\} , \{a, c\} \}$; Here $\{a\}$ is g_{α}-closed but not $^{*}g_{\alpha}$-closed in (X, τ).

Theorem 3.4. Every $^{*}g_{\alpha}$-closed set is αg-closed. Converse is not true is showed through an example.

Proof. Let $A \subseteq U$ and U is open set. Since every open set is $^{*}g_{\alpha}$-open, then U is $^{*}g_{\alpha}$-open set. Since A is $^{*}g_{\alpha}$-closed, then $\text{cl}_{\delta}(A) \subseteq U$. But $\text{cl}(A) \subseteq \text{cl}_{\delta}(A)$, then $\text{cl}(A) \subseteq U$, Therefore A is αg-closed set. □

Example 3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\} , \{a, b\} \}$; Here $\{b\}$ is αg-closed but not $^{*}g_{\alpha}$-closed in (X, τ).

Theorem 3.5. Every $^{*}g_{\alpha}$-closed set is g_{α}sp-closed. Converse is not true is showed through an example.

Proof. Let $A \subseteq U$ and U is open set. Since every open set is $^{*}g_{\alpha}$-open, then U is $^{*}g_{\alpha}$-open set. Since A is $^{*}g_{\alpha}$-closed, then $\text{cl}_{\delta}(A) \subseteq U$. But $\text{spcl}(A) \subseteq \text{cl}_{\delta}(A)$, then $\text{spcl}(A) \subseteq U$, Therefore A is g_{α}sp-closed set. □

Example 4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\} , \{b\} , \{a, b\} \}$; Here $\{a\}$ and $\{b\}$ are g_{α}sp-closed but not $^{*}g_{\alpha}$-closed in (X, τ).

Theorem 3.6. Every $^{*}g_{\alpha}$-closed set is g_{α}-closed. Converse is not true is showed through an example.

Proof. Let $A \subseteq U$ and U is open set. Since every open set is $^{*}g_{\alpha}$-open, then U is $^{*}g_{\alpha}$-open set. Since A is $^{*}g_{\alpha}$-closed, then $\text{cl}_{\delta}(A) \subseteq U$. But $\text{pcl}(A) \subseteq \text{cl}_{\delta}(A)$, then $\text{pcl}(A) \subseteq U$, Therefore A is g_{α}-closed. □
Example 5. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{b, c\}\} \); Here \(\{b\} \) and \(\{c\} \) are \(\delta^*g\alpha \)-closed but not \(\delta^*g\alpha \)-closed in \((X, \tau) \).

Theorem 3.7. Every \(\delta^*g\alpha \)-closed set is \(\delta gp \)-closed. Converse is not true is showed through an example.

Proof. Let \(A \subseteq U \) and \(U \) is \(\delta \)-open set. Since every \(\delta \)-open set is \(\ast g\alpha \)-open, then \(U \) is \(\ast g\alpha \)-open set. Since \(A \) is \(\delta^*g\alpha \)-closed, then \(\text{cl}_\delta(A) \subseteq U \). But \(\text{pcl}(A) \subseteq \text{cl}_\delta(A) \), then \(\text{pcl}(A) \subseteq U \), Therefore \(A \) is \(\delta gp \)-closed. \(\square \)

Example 6. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a, b\}\} \); Here \(\{a\} \), \(\{b\} \) and \(\{a, b\} \) is \(\delta gp \)-closed but not \(\delta^*g\alpha \)-closed in \((X, \tau) \).

Theorem 3.8. Every \(\delta^*g\alpha \)-closed set is \(g\delta \)-closed. Converse is not true is showed through an example.

Proof. Let \(A \subseteq U \) and \(U \) is \(\delta \)-open set. Since every \(\delta \)-open set is \(\ast g\alpha \)-open, then \(U \) is \(\ast g\alpha \)-open set. Since \(A \) is \(\delta^*g\alpha \)-closed, then \(\text{cl}_\delta(A) \subseteq U \). Hence \(A \) is \(g\delta \)-closed. \(\square \)

Example 7. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}\} \); Here \(\{a\} \) is \(g\delta^* \)-closed but not \(\delta^*g\alpha \)-closed in \((X, \tau) \).

Theorem 3.9. Every \(\delta^*g\alpha \)-closed set is \(\delta g^* \)-closed. Converse is not true is showed through an example.

Proof. Let \(A \subseteq U \) and \(U \) is \(\delta \)-open set. Since \(\delta \)-every open set is \(\ast g\alpha \)-open, then \(U \) is \(\ast g\alpha \)-open set. Since \(A \) is \(\delta^*g\alpha \)-closed, then \(\text{cl}_\delta(A) \subseteq U \). Hence \(A \) is \(g\delta^* \)-closed. \(\square \)

Example 8. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a, b\}\} \); Here \(\{a\}, \{b\} \) and \(\{a, b\} \) are \(g\delta^* \)-closed but not \(\delta^*g\alpha \)-closed in \((X, \tau) \).

Theorem 3.10. Every \(\delta^*g\alpha \)-closed set is \(g\delta s \)-closed. Converse is not true is showed through an example.

Proof. Let \(A \subseteq U \) and \(U \) is \(\delta \)-open set. Since every \(\delta \)-open set is \(\ast g\alpha \)-open, then \(U \) is \(\ast g\alpha \)-open set. Since \(A \) is \(\delta^*g\alpha \)-closed, then \(\text{cl}_\delta(A) \subseteq U \). But \(\text{scl}(A) \subseteq \text{cl}_\delta(A) \), then \(\text{scl}(A) \subseteq U \), Therefore \(A \) is \(g\delta s \)-closed. \(\square \)

Example 9. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{a, b\}\} \); Here \(\{a\}, \{b\} \) and \(\{a, b\} \) are \(g\delta s \)-closed but not \(\delta^*g\alpha \)-closed in \((X, \tau) \).
Theorem 3.11. Every $\delta^*g\alpha$-closed set is δgb-closed. Converse is not true is showed through an example.

Proof. Let $A \subseteq U$ and U is δ-open set. Since every δ-open set is $^*g\alpha$-open, then U is $^*g\alpha$-open set. Since A is $\delta^*g\alpha$-closed, then $\text{cl}_{\delta}(A) \subseteq U$. But $\text{bcl}(A) \subseteq \text{cl}_{\delta}(A)$, then $\text{bcl}(A) \subseteq U$, Therefore A is δgb-closed. □

Example 10. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, c\}, \{a, c\}\}$; Here $\{a\}, \{c\}$ and $\{a, c\}$ are δgb-closed but not $\delta^*g\alpha$-closed in (X, τ).

Theorem 3.12. The finite union of $\delta^*g\alpha$-closed sets is $\delta^*g\alpha$-closed.

Proof. Let $\{A_i/ i = 1, 2, ... n\}$ be a finite class of $\delta^*g\alpha$-closed subsets of a space (X, τ). Then for each $^*g\alpha$-open set U_i in X containing $A_i, \text{cl}_{\delta}(A_i) \subseteq \cap U_i, i \in \{1, 2, ... n\}$. Hence $\cup A_i \subseteq \cup U_i = V$. Since arbitrary union of $^*g\alpha$-open sets in (X, τ) is also $^*g\alpha$-open set in (X, τ), V is $^*g\alpha$-open in (X, τ). Also $\cup \text{cl}_{\delta}(A_i) = \text{cl}_{\delta}(\cup A_i) \subseteq V$. Therefore $U_i A_i$ is $\delta^*g\alpha$-closed in (X, τ). □

Remark 3.1. Intersection of any two $\delta^*g\alpha$-closed sets in (X, τ) need not be $\delta^*g\alpha$-closed in (X, τ), it can be seen by the following example.

Example 11. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; $\{b, c\}$ and $\{b, d\}$ are $\delta^*g\alpha$-closed sets but their intersection $\{b\}$ is not $\delta^*g\alpha$-closed.

Theorem 3.13. Let A be a $\delta^*g\alpha$-closed set of (X, τ), then $\text{cl}_{\delta}(A)-A$ does not contain a non-empty $^*g\alpha$-closed set.

Proof. Suppose that A is $\delta^*g\alpha$-closed, let F be a $^*g\alpha$-closed set contained in $\text{cl}_{\delta}(A)-A$. Now F^c is $^*g\alpha$-open set of (X, τ) such that $A \subseteq F^c$. Since A is $\delta^*g\alpha$-closed set of (X, τ), then $\text{cl}_{\delta}(A) \subseteq F^c$. Thus $F \subseteq (\text{cl}_{\delta}(A))^c$. Also $F \subseteq \text{cl}_{\delta}(A) - A$. Therefore $F \subseteq \text{cl}_{\delta}(A) \cap (\text{cl}_{\delta}(A) = \phi$. Hence $F = \phi$. □

Theorem 3.14. If A is $^*g\alpha$-open and $\delta^*g\alpha$-closed subset of (X, τ) then A is an δ-closed subset of (X, τ).

Proof. Since A is $g\alpha$-open and $\delta^*g\alpha$-closed, $\text{cl}_{\delta}(A) \subseteq A$. Hence A is δ-closed. □

Theorem 3.15. The intersection of a $\delta^*g\alpha$-closed set and a δ-closed set is always $\delta^*g\alpha$-Closed.
Proof. Let A be $\delta^*g\alpha$-Closed and let F be δ-closed. If U is an $^\ast g\alpha$-open set with $A \cap F \subseteq U$, then $A \subseteq U \cap F^c$ and so $cl_\delta(A) \subseteq U \cap F^c$. Now $cl_\delta(A \cap F) \subseteq cl_\delta(A) \cap F \subseteq U$. Hence $A \cap F$ is $\delta^*g\alpha$-closed. □

Theorem 3.16. In a $T_{3/4}$-space every $\delta^*g\alpha$-closed set is δ-closed.

Proof. Let X be a $T_{3/4}$-space. Let A be a $\delta^*g\alpha$-closed set of X. We know that every $\delta^*g\alpha$-closed set is $\delta g\alpha$-closed. Since X is a $T_{3/4}$-space, A is δ-closed. □

Theorem 3.17. If A is a $\delta^*g\alpha$-closed set in a space (X, τ) and $A \subseteq B \subseteq cl_\delta(A)$, then B is also a $\delta^*g\alpha$-closed set.

Proof. Let U be a $^\ast g\alpha$-open set of (X, τ) such that $B \subseteq cl_\delta(A)$, then $A \subseteq U$. Since A is a $\delta^*g\alpha$-closed set, $cl_\delta(A) \subseteq U$. Also since $B \subseteq cl_\delta(A)$, $cl_\delta(B) \subseteq cl_\delta(cl_\delta(A)) = cl_\delta(A) \subseteq U$. Implies $cl?(B) \subseteq U$. Therefore B is also a $\delta^*g\alpha$-closed set. □

Theorem 3.18. Let A be a $\delta^*g\alpha$-closed of (X, τ), then A is δ-closed iff $cl_\delta(A) - A$ is $^\ast g\alpha$-closed.

Proof. Necessity. Let A be a δ-closed subset of X. Then $cl_\delta(A) = A$ and so $cl_\delta(A) - A = \phi$ which is $^\ast g\alpha$-closed.

Sufficiency. Since A is $\delta^*g\alpha$-closed, by proposition, $cl_\delta(A) - A$ does not contain a non-empty $^\ast g\alpha$-closed set. But $cl_\delta(A) - A = \phi$. That is $cl_\delta(A) = A$. Hence A is δ-closed. □

4. SOME SPACES USING $\delta^*g\alpha$-CLOSED SETS

We introduce the following definition.

Definition 4.1. A space (X, τ) is called $\alpha_\delta T_{3^*4}^\ast g\alpha$-space if every $\delta^*g\alpha$-closed set is an δ-closed.

Theorem 4.1. For a topological space (X, τ), the following conditions are equivalent.

(i) (X, τ) is a $\alpha_\delta T_{3^*4}^\ast g\alpha$-space.

(ii) Every singleton $\{x\}$ is either $^\ast g\alpha$-closed or δ-open.
Theorem 4.4. Every $δ$-space is αg-closed. Since every $δgα$-closed set is $δ$-closed, then A is $gδsC$ closed. Since $(X, τ)$ is $αδT_{3}^{∗∗}$-space, then A is $δ$-closed.

Therefore $(X, τ)$ is $αδT_{3}^{∗∗}$-space. □

Theorem 4.2. Every $δT_{3/4}^{∗}$-space is a $αδT_{3}^{∗∗}$-space. Converse is not true is showed through an example.

Proof. Let A be a $δ$-closed set of $(X, τ)$. Since every $δgα$-closed set is $gδ$-closed, then A is $gδsC$ closed. Since $(X, τ)$ is $δT_{3/4}^{∗}$-space, then A is $δ$-closed. Therefore $(X, τ)$ is $αδT_{3}^{∗∗}$-space. □

Example 12. Let $X = \{a, b, c\}$, $τ = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$; Here it is $αδT_{3}^{∗∗}$-space but not $δT_{3/4}^{∗}$-space, Since $\{a\}$ is $gδ$-closed set but not $δ$-closed set.

Theorem 4.3. Every $δT_{δgb}$-space is a $αδT_{3}^{∗∗}$-space. Converse is not true is showed through an example.

Proof. Let A be a $δgα$-Closed set of $(X, τ)$. Since every $δgα$-Closed set is $δgb$-closed, then A is $δgb$-closed. Since $(X, τ)$ is $δT_{δgb}$-space, then A is $δ$-closed.

Therefore $(X, τ)$ is $αδT_{3}^{∗∗}$-space. □

Example 13. Let $X = \{a, b, c\}$, $τ = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$; Here it is $αδT_{3}^{∗∗}$-space but not $δT_{δgb}$-space, Since $\{a\}$ is $δgb$-closed set but not $δ$-closed set.

Definition 4.2. A space $(X, τ)$ is called $δT_{c}^{∗∗}$-space if every gs-Closed set in it is an $δ^∗gα$-closed.

Theorem 4.4. Every $δT_{c}^{∗∗}$-space is a $αT_{d}$-space. Converse is not true is showed through an example.

Proof. Let A be a $αg$-Closed set of $(X, τ)$. Since $αg$-Closed set is gs-closed, then A is gs-closed. Since $(X, τ)$ is a $δT_{c}^{∗∗}$-space in $(X, τ)$, then A is $δ^∗gα$-closed.
Since every $\delta^* g^0$-closed set is g-closed, then A is g-closed. Therefore (X, τ) is αT_d-space.

Example 14. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$; Here it is αT_d-space but not $\delta^* T_c$-space.

Definition 4.3. A space (X, τ) is called $\delta \alpha T_c$-space if every αg-Closed set in it is an $\delta^* g^0$-closed.

Theorem 4.5. Every δT_c^*-space is a $\delta \alpha T_c^*$-space. Converse is not true is showed through an example.

Proof. Let A be a αg-Closed set of (X, τ). Since every αg-Closed set is gs-closed, then A is gs-closed. Since (X, τ) is δT_c^*-space, then A is $\delta^* g^0$-closed. Therefore (X, τ) is an $\delta \alpha T_c^*$-space.

Example 15. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$; Here it is $\delta \alpha T_c^*$-space but not $\delta^* T_c^*$-space, Since $\{a\}$ is gs-closed set but not $\delta^* g^0$-closed set.

Definition 4.4. A space (X, τ) is called $\delta \alpha T_c^*$-space if every g-Closed set in it is an $\delta^* g^0$-closed.

Theorem 4.6. Every δT_c^*-space is a $\delta \alpha T_c^*$-space. Converse is not true is showed through an example.

Proof. Let A be a g-Closed set of (X, τ). Since every g-Closed set is αg-closed, then A is αg-closed. Since (X, τ) is αT_c^*-space, then A is $\delta^* g^0$-closed. Therefore (X, τ) is an $\delta \alpha T_c^*$-space.

Example 16. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, b, c\}\}$; Here it is $\delta \alpha T_c^*$-space but not δT_c^*-space, Since $\{b\}$ is gs-closed set but not $\delta^* g^0$-closed set.

Theorem 4.7. Every $\delta \alpha T_c^*$-space is a $\delta \alpha T_2$-space. Converse is not true is showed through an example.

Proof. Let A be a g-Closed set of (X, τ). Since every g-Closed set is αg-closed, then A is αg-closed. Since (X, τ) is $\delta \alpha T_c^*$-space, then A is $\delta^* g^0$-closed. Therefore (X, τ) is an $\delta \alpha T_2$-space.
5. Conclusion

This article defined $\delta^*g\alpha$-closed set in Topological Spaces and relation with other exciting sets in topology were studied. Along with that some of there properties were discussed. Also $\alpha_0T^{**}_c$-space, δT^{**}_c-space, $^{**}_cT^{**}_{1/2}$-space and $\delta_0T^{**}_c$-space of a set were introduced and discussed their properties. This set can be used to derive few more functions such as $\delta^*g\alpha$-continuous and $\delta^*g\alpha$-irresolute functions. In addition to that it can be extended to homeomorphisms of topological spaces.

References

817

DEPARTMENT OF MATHEMATICS
KPR INSTITUTE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS)
COIMBATORE - 641407, INDIA.
E-mail address: catchmedamo@gmail.com

DEPARTMENT OF MATHEMATICS
KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)
COIMBATORE - 641029, INDIA.
E-mail address: vignesh.mat@gmail.com