CARTESIAN PRODUCT OF INTUITIONISTIC FUZZY PMS-IDEALS OF PMS-ALGEBRAS

C. RAGAVAN, M. BALAMURUGAN¹, B. THIRUMARAN, AND S. SENTHILKUMAR

ABSTRACT. In this paper, the notion of intuitionistic fuzzy PMS-ideal of PMS-algebras is introduced. Also, the notions of an intuitionistic fuzzy translation and intuitionistic fuzzy multiplications of PMS-algebras are introduced. Furthermore, Cartesian product of intuitionistic fuzzy PMS-ideals of PMS-algebras is introduced and investigated several properties. Finally, the Cartesian product of intuitionistic fuzzy translation and multiplication are introduced.

1. INTRODUCTION

Present-day science and technology is featured with advanced processes and phenomena for which complete data isn’t continuously offered. In such cases, mathematical models are developed to handle numerous forms of systems containing components of uncertainty. An outsized a part of these models square measure supported a recent extension of the standard pure mathematics, namely, the alleged fuzzy sets. Fuzzy sets (FSs, for short) were introduced by L.A. Zadeh [5] in 1965.

The other basic field of analytic interest for outlining by Lotfi Zadeh, that he considerably extended Atanassov [1] by launching the conception of "Intuitionistic Fuzzy Sets" and investigated their basis properties. Sithar Selvam

¹corresponding author
and Nagalakshmi [2] introduced the concept of homomorphism and Cartesian product of fuzzy PMS-algebras and established some of its properties in detail. In this paper, the notions of an intuitionistic fuzzy translation and intuitionistic fuzzy multiplications are introduced. Furthermore, Cartesian product of intuitionistic fuzzy PMS-ideals of PMS-algebras are introduced and investigates several properties. Finally, the Cartesian product of intuitionistic fuzzy translation and multiplication are introduced.

2. Preliminaries

Definition 2.1. A BCK-algebra is an algebra \((P; *, 0)\) of type \((2, 0)\) fulfilling the subsequent conditions:

(i) \((p * q) * (p * r) \leq (r * q)\),
(ii) \(p * (p * q) \leq q\),
(iii) \(p \leq p\),
(iv) \(p \leq q\) and \(q \leq p \Rightarrow p = q\),
(v) \(0 \leq p \Rightarrow p = 0\),

where \(p \leq q\) is defined by \(p * q = 0\), for all \(p, q, r \in P\).

Definition 2.2. A non-empty set \(P\) with a continuing zero and a binary arithmetic operation ‘*’ is known as PMS-algebra if it satisfies the subsequent axioms.

1. \(0 * p = p\);
2. \((q * p) * (r * p) = r * q\), for all \(p, q, r \in P\).

For brevity, \(P\) denotes a PMS-algebra. In \(P\), we define a binary relation \(\leq\) by \(p \leq q\) if and only if \(p * q = 0\).

Definition 2.3. A fuzzy set \(\zeta\) in a \(P\) is referred to as a fuzzy PMS-ideal of \(P\) if \(\zeta(q * p) \geq m(\zeta(r * q), \zeta(r * p))\), for all \(p, q \in P\).

Definition 2.4. Let \(f : P \to P\) be an associate endomorphism and \(\zeta\) be a fuzzy set in \(P\). We tend to outline a replacement fuzzy set in \(P\) as \(\zeta^f(p) = \zeta(f(p))\) for all \(p \in P\).
3. Intuitionistic Fuzzy Translation and Intuitionistic Fuzzy Multiplication

Definition 3.1. Let \(f : P \rightarrow P \) be an endomorphism and \((\zeta_\psi, \xi_\psi)\) be an intuitionistic fuzzy set in \(P\). We define the intuitionistic fuzzy set \((\zeta_\psi^f, \xi_\psi^f)\) as \(\zeta_\psi^f(p) = \zeta_\psi(f(p))\) and \(\xi_\psi^f(p) = \xi_\psi(f(p))\) for all \(p \in P\).

Definition 3.2. (3) An IFS \((\zeta_\psi, \xi_\psi)\) in \(P\) is known as an IF PMS-ideal of \(P\) if

- (i) \(\zeta_\psi(0) \geq \zeta_\psi(p)\) and \(\xi_\psi(0) \geq \xi_\psi(p)\),
- (ii) \(\zeta_\psi(q \ast p) \geq m\{\zeta_\psi(r \ast q), \zeta_\psi(r \ast p)\}\),
- (iii) \(\xi_\psi(q \ast p) \leq M\{\xi_\psi(r \ast q), \xi_\psi(r \ast p)\}\),

for all \(p, q, r \in P\).

Definition 3.3. Let \(f : P \rightarrow P \) be an endomorphism and \(((\zeta_\psi)^T_\gamma, (\xi_\psi)^T_\gamma)\) be an IF \(\gamma\)-translation of \(\zeta_\psi\) and \(\xi_\psi\) in \(P\). We define a new IFS in \(P\) by \(((\zeta_\psi)^T_\gamma, (\xi_\psi)^T_\gamma)\) in \(P\) as \(((\zeta_\psi)^T_\gamma)f(p) = (\zeta_\psi)^T_\gamma(f(p)) = \zeta_\psi[f(p)] + \gamma\) and \(((\xi_\psi)^T_\gamma)f(p) = (\xi_\psi)^T_\gamma(f(p)) = \xi_\psi[f(p)] - \gamma\), for any \(p \in P\).

Theorem 3.1. If \((\zeta_\psi, \xi_\psi)\) is an IF ideal of \(P\), then \(((\zeta_\psi)^T_\gamma, (\xi_\psi)^T_\gamma)\) is an IF ideal of \(P\).

Proof. Let \((\zeta_\psi, \xi_\psi)\) be an IF ideal of \(P\). Now,

\[((\zeta_\psi)^T_\gamma)f(0) = (\zeta_\psi)^T_\gamma[f(0)] = \zeta_\psi[f(0)] + \gamma \geq \zeta_\psi[f(p)] + \gamma = (\zeta_\psi)^T_\gamma[f(p)] \]

and

\[((\xi_\psi)^T_\gamma)f(0) = (\xi_\psi)^T_\gamma[f(0)] = \xi_\psi[f(0)] - \gamma \leq \xi_\psi[f(p)] - \gamma = (\xi_\psi)^T_\gamma[f(p)]. \]

Let \(p, q \in P\). Then

\[((\zeta_\psi)^T_\gamma)f(p) = (\zeta_\psi)^T_\gamma[f(p)] = \zeta_\psi[f(p)] + \gamma \geq m\{\zeta_\psi(f(q) \ast f(p)), \zeta_\psi(f(q))\} + \gamma = m\{\zeta_\psi(f(q \ast p)), \zeta_\psi(f(q))\} + \gamma = m\{\zeta_\psi(f(q \ast p)) + \gamma, \zeta_\psi(f(q)) + \gamma\} = m\{(\zeta_\psi)^T_\gamma[f(q \ast p)], (\zeta_\psi)^T_\gamma[f(q)]\} \]

and

\[((\xi_\psi)^T_\gamma)f(p) = (\xi_\psi)^T_\gamma[f(p)] = \xi_\psi[f(p)] - \gamma \leq M\{\xi_\psi(f(q) \ast f(p)), \xi_\psi(f(q))\} - \gamma = M\{\xi_\psi(f(q \ast p)), \xi_\psi(f(q))\} - \gamma = M\{\xi_\psi(f(q \ast p)) - \gamma, \xi_\psi(f(q)) - \gamma\} = M\{(\xi_\psi)^T_\gamma[f(q \ast p)], (\xi_\psi)^T_\gamma[f(q)]\}. \]

Hence \(((\zeta_\psi)^T_\gamma, (\xi_\psi)^T_\gamma)\) is an IF ideal of \(P\). \(\square\)
Definition 3.4. Let \(f : P \rightarrow P \) be an endomorphic and \(((\zeta_\psi)_\gamma)^M, (\xi_\psi)_\gamma^M\) be an IF-\(\gamma\)-multiplication of \((\zeta_\psi, \xi_\psi)\) in \(P\). We define new IFS in \(P\) by \(((\zeta_\psi)_\gamma^M\}(f(p)) = (\zeta_\psi)_\gamma^M(f(p)) = \gamma \zeta_\psi(f(p)) \) and \(((\xi_\psi)_\gamma^M\}(f(p)) = (\xi_\psi)_\gamma^M(f(p)) = \gamma \xi_\psi(f(p))\), for any \(p \in P\).

Theorem 3.2. If \((\zeta_\psi, \xi_\psi)\) is an IF ideal of \(P\), then therefore is \(((\zeta_\psi)_\gamma^M, (\xi_\psi)_\gamma^M)\)\).

Proof. Let \((\zeta_\psi, \xi_\psi)\) is an IF ideal of \(Q\) and let \(p, q \in P\). Then

\[
((\zeta_\psi)_\gamma^M f(0) = (\zeta_\psi)_\gamma^M [f(0)] = \gamma \zeta_\psi(f(0)) \geq \gamma \zeta_\psi(f(p)) = (\zeta_\psi)_\gamma^M [f(p)]
\]

and

\[
((\xi_\psi)_\gamma^M f(0) = (\xi_\psi)_\gamma^M [f(0)] = \gamma \xi_\psi(f(0)) \leq \gamma \xi_\psi(f(p)) = (\xi_\psi)_\gamma^M [f(p)]
\]

Also

\[
((\zeta_\psi)_\gamma^M f(p) = (\zeta_\psi)_\gamma^M [f(p)] = \gamma \zeta_\psi(f(p)) \geq \gamma m\{\zeta_\psi(f(q * f(p)), \zeta_\psi(f(q))\} = \gamma m\{\zeta_\psi(f(q * f(p)), \zeta_\psi(f(q))\} = m\{\zeta_\psi(f(q * f(p)), \zeta_\psi(f(q))\} = m\{\zeta_\psi(f(q * f(p)), \zeta_\psi(f(q))\} = m\{\zeta_\psi(f(q * f(p)), \zeta_\psi(f(q))\}
\]

\[
((\xi_\psi)_\gamma^M f(p) = (\xi_\psi)_\gamma^M [f(p)] = \gamma \xi_\psi(f(p)) \leq \gamma M\{\xi_\psi(f(q * f(p)), \xi_\psi(f(q))\} = \gamma M\{\xi_\psi(f(q * f(p)), \xi_\psi(f(q))\} = M\{\xi_\psi(f(q * f(p)), \xi_\psi(f(q))\} = M\{\xi_\psi(f(q * f(p)), \xi_\psi(f(q))\}
\]

Hence \(((\zeta_\psi)_\gamma^M, (\xi_\psi)_\gamma^M)\) is an IF ideal of \(P\). \(\Box\)

4. Cartesian product of intuitionistic fuzzy PMS-ideals

Definition 4.1. [4] Let \((\zeta_\psi, \xi_\psi)\) and \((\zeta_\varpi, \xi_\varpi)\) are IF sets in \(P\). Then the Cartesian product \(\zeta_\psi \times \zeta_\varpi : P \times P \rightarrow [0, 1]\) and \(\xi_\psi \times \xi_\varpi : P \times P \rightarrow [0, 1]\) are defined by \((\zeta_\psi \times \zeta_\varpi)(p, q) = m\{\zeta_\psi(p), \zeta_\varpi(q)\}\) and \((\xi_\psi \times \xi_\varpi)(p, q) = M\{\xi_\psi(p), \xi_\varpi(q)\}\) for all \(p, q \in P\).

Theorem 4.1. If \((\zeta_\psi, \xi_\psi)\) and \((\zeta_\varpi, \xi_\varpi)\) are IF ideals in \(P\), then \(\zeta_\psi \times \zeta_\varpi\) and \(\xi_\psi \times \xi_\varpi\) are an IF ideal in \(P \times P\).

Proof. Let \((p_1, p_2) \in P \times P\). Then

\[
(\zeta_\psi \times \zeta_\varpi)(0, 0) = m\{\zeta_\psi(0), \zeta_\varpi(0)\} \geq m\{\zeta_\psi(p_1), \zeta_\varpi(p_2)\} = (\zeta_\psi \times \zeta_\varpi)(p_1, p_2)
\]
and

$$(\zeta_\psi \times \zeta_\omega)(0, 0) = M\{\zeta_\psi(0), \zeta_\omega(0)\} \leq M\{\zeta_\psi(p_1), \zeta_\omega(p_2)\} = (\zeta_\psi \times \zeta_\omega)(p_1, p_2).$$

Let $(p_1, p_2), (q_1, q_2), (r_1, r_2) \in P \times P$. Then

$$(\zeta_\psi \times \zeta_\omega)[(q_1, q_2) * (p_1, p_2)] = (\zeta_\psi \times \zeta_\omega)[q_1 * p_1, q_2 * p_2] = m\{\zeta_\psi(q_1 * p_1), \zeta_\omega(q_2 * p_2)\} \geq m\{m\{\zeta_\psi(r_1 * q_1), \zeta_\omega(r_2 * q_2)\}, m\{\zeta_\omega(r_2 * p_2)\}\} = m\{m\{\zeta_\psi(r_1 * q_1), \zeta_\omega(r_2 * q_2)\}, \zeta_\omega(r_2 * p_2)\}\} = M\{\zeta_\psi \times \zeta_\omega\}[r_1 * q_1, (r_2 * q_2), (\zeta_\psi \times \zeta_\omega)[r_1 * p_1, (r_2 * p_2)]\}.$$

Hence, $\zeta_\psi \times \zeta_\omega$ and $\zeta_\psi \times \zeta_\omega$ are an IF ideal in $P \times P$.

Definition 4.2. Let γ be an IF subset of P. The strongest IF γ-relation on P is the IF subset $(\zeta_\psi)_\gamma$ and $(\zeta_\omega)_\gamma$ of $P \times P$ given by $(\zeta_\psi)_\gamma(p, q) = m\{\gamma(p), \gamma(q)\}$ and $(\zeta_\omega)_\gamma(p, q) = M\{\gamma(p), \gamma(q)\}$, for all $p, q \in P$.

Theorem 4.2. If γ is an IF ideal of P, then $(\zeta_\psi)_\gamma$, $(\zeta_\omega)_\gamma$ is an IF ideal of $P \times P$.

Proof. Let γ be an IF ideal of P. Let $(p_1, p_2) \in P \times P$. Then

$$(\zeta_\psi)_\gamma(0, 0) = M\{((\zeta_\psi)_\gamma(0), (\zeta_\psi)_\gamma(0)) \geq M\{(\zeta_\psi)_\gamma(p_1), (\zeta_\psi)_\gamma(p_2)\}$$

and

$$(\zeta_\psi)_\gamma(0, 0) = M\{((\zeta_\psi)_\gamma(0), (\zeta_\psi)_\gamma(0)) \leq M\{(\zeta_\psi)_\gamma(p_1), (\zeta_\psi)_\gamma(p_2)\}. $$

Let $(p_1, p_2), (q_1, q_2), (r_1, r_2) \in P \times P$. Then

$$(\zeta_\psi)_\gamma[(q_1, q_2) * (p_1, p_2)] = (\zeta_\psi)_\gamma[q_1 * p_1, q_2 * p_2] = m\{\gamma(q_1 * p_1), \gamma(q_2 * p_2)\} \geq m\{m\{\gamma(r_1 * q_1), \gamma(r_1 * p_1)\}, \gamma(r_2 * q_2)\}\} = m\{m\{\gamma(r_1 * q_1), \gamma(r_2 * p_2)\}, \gamma(r_2 * q_2)\}\} = M\{m\{\gamma(r_1 * q_1), \gamma(r_2 * p_2)\}, \gamma(r_2 * q_2)\}\} = M\{\zeta_\psi \times \zeta_\omega\}[r_1 * q_1, (r_2 * p_2), (\zeta_\psi \times \zeta_\omega)[r_1 * p_1, (r_2 * p_2)]\}.$$

and

$$(\zeta_\psi)_\gamma[(q_1, q_2) * (p_1, p_2)] = (\zeta_\psi)_\gamma[q_1 * p_1, q_2 * p_2] = M\{\gamma(q_1 * p_1), \gamma(q_2 * p_2)\} \leq M\{M\{\gamma(r_1 * q_1), \gamma(r_1 * p_1)\}, \gamma(r_2 * q_2)\}\} = M\{M\{\gamma(r_1 * q_1), \gamma(r_2 * p_2)\}, \gamma(r_2 * q_2)\}\} = M\{\zeta_\psi \times \zeta_\omega\}[r_1 * q_1, (r_2 * q_2), (\zeta_\psi \times \zeta_\omega)[r_1 * p_1, (r_2 * p_2)]\}.$$

Therefore, $(\zeta_\psi)_\gamma$ and $(\zeta_\psi)_\gamma$ are an IF ideal of $P \times P$.

Theorem 4.3. If \(((\xi_\psi)_\gamma, (\xi_\psi)_\gamma)\) is an IF ideal of \(P \times P\), then \(\gamma\) is an IF ideal of \(P\).

Proof. Let \((\xi_\psi)_\gamma\) and \((\xi_\psi)_\gamma\) are an IF ideal of \(P \times P\). Then for all
\[(p_1, p_2), (q_1, q_2), (r_1, r_2) \in P \times P\].
\[m\{\gamma(0), \gamma(0)\} = (\xi_\psi)_\gamma(0,0) \geq (\xi_\psi)_\gamma(p_1, p_2) \]
\[\Rightarrow m\{\gamma(0), \gamma(0)\} \geq m\{\gamma(p_1), \gamma(p_2)\} \Rightarrow \gamma(0) \geq \gamma(p_1)\]
or
\[\gamma(0) \geq \gamma(p_2)\]
and
\[M\{\gamma(0), \gamma(0)\} = (\xi_\psi)_\gamma(0,0) \leq (\xi_\psi)_\gamma(p_1, p_2) \Rightarrow M\{\gamma(0), \gamma(0)\} \leq M\{\gamma(p_1), \gamma(p_2)\}\]

Also,
\[m\{\gamma(q_1 \ast p_1), \gamma(q_2 \ast p_2)\} = (\xi_\psi)_\gamma[\gamma(q_1 \ast p_1, q_2 \ast p_2)] = (\xi_\psi)_\gamma([\gamma(q_1, q_2) \ast (p_1, p_2)]) \geq m\{(\xi_\psi)_\gamma[(r_1, r_2) \ast (q_1, q_2)], (\xi_\psi)_\gamma[(r_1, r_2) \ast (p_1, p_2)]\} = m\{m\{\gamma(r_1 \ast q_1), \gamma(r_2 \ast q_2)\}, m\{\gamma(r_1 \ast p_1), \gamma(r_2 \ast p_2)\}\} = m\{m\{\gamma(r_1 \ast q_1), \gamma(r_2 \ast q_2)\}, \gamma(r_1 \ast p_1), \gamma(r_2 \ast p_2)\}\}

Put \(p_2 = q_2 = r_2 = 0\), we get
\[\gamma(q_1 \ast p_1) \geq m\{\gamma(r_1 \ast q_1), \gamma(r_1 \ast p_1)\}\]
and
\[M\{\gamma(q_1 \ast p_1), \gamma(q_2 \ast p_2)\} = (\xi_\psi)_\gamma[\gamma(q_1 \ast p_1, q_2 \ast p_2)] = (\xi_\psi)_\gamma([\gamma(q_1, q_2) \ast (p_1, p_2)]) \leq M\{(\xi_\psi)_\gamma[(r_1, r_2) \ast (q_1, q_2)], (\xi_\psi)_\gamma[(r_1, r_2) \ast (p_1, p_2)]\} = M\{M\{\gamma(r_1 \ast q_1), \gamma(r_2 \ast q_2)\}, \gamma(r_1 \ast p_1), \gamma(r_2 \ast p_2)\}\}

Put \(p_2 = q_2 = r_2 = 0\), we get \(\gamma(q_1 \ast p_1) \leq M\{\gamma(r_1 \ast q_1), \gamma(r_1 \ast p_1)\}\).

Hence, \(\gamma\) is an IF ideal of \(P\).

\[\square\]

5. Cartesian Product of Intuitionistic Fuzzy Translation and Fuzzy Multiplication

Definition 5.1. Let \(((\xi_\psi)_\gamma^T, (\xi_\psi)_\gamma^T)\) and \(((\xi_\omega)_\gamma^T, (\xi_\omega)_\gamma^T)\) are IF sets in \(P\). Then the Cartesian product \((\xi_\psi)_\gamma^T \times (\xi_\omega)_\gamma^T : P \times P \rightarrow [0, 1]\) and \((\xi_\psi)_\gamma^T \times (\xi_\omega)_\gamma^T : P \times P \rightarrow [0, 1]\) are defined by
\[((\xi_\psi)_\gamma^T \times (\xi_\omega)_\gamma^T)(p, q) = m\{(\xi_\psi)_\gamma^T(p), (\xi_\omega)_\gamma^T(q)\}\] and \[((\xi_\psi)_\gamma^T \times (\xi_\omega)_\gamma^T)(p, q) = M\{(\xi_\psi)_\gamma^T(p), (\xi_\omega)_\gamma^T(q)\}\] for all \(p, q \in P\).

Theorem 5.1. If \((\xi_\psi, \xi_\psi)\) and \((\xi_\omega, \xi_\omega)\) are IF ideals in \(P\), then \(((\xi_\psi)_\gamma^T \times (\xi_\omega)_\gamma^T)\) and \(((\xi_\psi)_\gamma^T \times (\xi_\omega)_\gamma^T)\) are an IF ideal in \(P \times P\).
Proof. Let \((p_1, p_2) \in P \times P\). Then
\[
((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(0, 0) = m\{((\xi_\nu)_{\gamma}^T(0), (\xi_\nu)_{\gamma}^T(0)) \geq m\{\xi_\nu(0) + \gamma, \xi_\nu(0) + \gamma\} = m\{\xi_\nu(0), \xi_\nu(0)\} + \gamma \geq m\{\xi_\nu(p_1) + \gamma, \xi_\nu(p_2) + \gamma\} = m\{\xi_\nu(p_1) + \gamma, \xi_\nu(p_1) + \gamma\} = m\{((\xi_\nu)_{\gamma}^T(p_1), (\xi_\nu)_{\gamma}^T(p_1))\}
\]
and
\[
((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(0, 0) = M\{((\xi_\nu)_{\gamma}^T(0), (\xi_\nu)_{\gamma}^T(0)) \leq M\{\xi_\nu(0) - \gamma, \xi_\nu(0) - \gamma\} = M\{\xi_\nu(0), \xi_\nu(0)\} - \gamma \leq M\{\xi_\nu(p_1) - \gamma, \xi_\nu(p_2) - \gamma\} = M\{\xi_\nu(p_1) - \gamma, \xi_\nu(p_1) - \gamma\} = M\{((\xi_\nu)_{\gamma}^T(p_1), (\xi_\nu)_{\gamma}^T(p_1))\}
\]
Let \((p_1, p_2), (q_1, q_2), (r_1, r_2) \in P \times P\). Then
\[
((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(p_1, p_2) = m\{((\xi_\nu)_{\gamma}^T(p_1), (\xi_\nu)_{\gamma}^T(p_2)) = m\{\xi_\nu(p_1) + \gamma, \xi_\nu(p_2) + \gamma\} = m\{\xi_\nu(p_1), \xi_\nu(p_2)\} + \gamma \geq m\{m\{\xi_\nu(q_1 * p_1), \xi_\nu(y_1)\}, m\{\xi_\nu(q_2 * p_2), \xi_\nu(q_2)\}\} + \gamma = m\{m\{\xi_\nu(q_1 * p_1) + \gamma, \xi_\nu(y_1)\} + \gamma, m\{\xi_\nu(q_2 * p_2) + \gamma, \xi_\nu(q_2) + \gamma\}\}
\]
and
\[
((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(y_1, y_2) = M\{((\xi_\nu)_{\gamma}^T(y_1), (\xi_\nu)_{\gamma}^T(y_2))\}
\]
and
\[
M\{((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(y_1, y_2)\} = M\{((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(p_1, p_2)\} = M\{((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)(q_1 * p_1, q_2 * p_2)\}
\]
Hence, \(((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)\) and \(((\xi_\nu)_{\gamma}^T \times (\xi_\nu)_{\gamma}^T)\) are an IF PMS-ideal in \(P \times P\). □

References

Department of Mathematics
Sri Vidya Mandir Arts and Science College
Uthangarai-636902
Tamilnadu, India
Email address: balamurugansvm@gmail.com