DECOMPOSITIONS OF πg-CONTINUITY VIA IDEAL NANO TOPOLOGICAL SPACES

O. NETHAJI1, R. ASOKAN, AND I. RAJASEKARAN

ABSTRACT. In this paper, we introduce and discuss some notions of $I_{n\pi g}$-closed sets, $I_{n\pi g}$-continuity in ideal nano spaces.

1. INTRODUCTION AND PRELIMINARIES

According to [14], an ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

(i) $A \in I$ and $B \subseteq A$ imply $B \in I$ and
(ii) $A \in I$ and $B \in I$ imply $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I on X. If $\wp(X)$ is the family of all subsets of X, a set operator $(\cdot)^* : \wp(X) \to \wp(X)$, called a local function of A with respect to τ and I is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$, [3].

The closure operator defined by $cl^*(A) = A \cup A^*(I, \tau)$, [13] is a Kuratowski closure operator which generates a topology $\tau^*(I, \tau)$ called the $*$-topology finer than τ. The topological space together with an ideal on X is called an ideal topological space or an ideal space denoted by (X, τ, I). We will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$.

1corresponding author

2010 Mathematics Subject Classification. 54A05, 54A10, 54C08, 54C10.

Key words and phrases. nano πg-closed sets, $I_{n\pi g}$-closed sets and $I_{n\pi g}$-continuity.
In this paper, we introduce and discuss some notions of \(I_{n\pi g}\)-closed sets, \(I_{\pi g}\)-continuity in ideal nano spaces.

We denote a nano topological space by \((U, \mathcal{N})\), where \(\mathcal{N} = \tau_R(X) \). The nano-interior, nano-closure and nano \(\alpha\)-closure of a subset \(A \) of \(U \) are denoted by \(I_n(A), C_n(A) \) and \(C_{n\alpha}(A) \), respectively.

An ideal nanotopological space is denoted by \((U, \mathcal{N}, I)\). The nano-interior and nano-closure of a subset \(A \) of \(U \) are denoted by \(I^*(A) \) and \(C^*(A) \), respectively.

Definition 1.1. A subset \(A \) of a space \((U, \mathcal{N})\) is called

(i) nano \(\alpha\)-open if \(A \subseteq I_n(C_n(I_n(A))) \), [4];
(ii) nano semi-open if \(A \subseteq C_n(I_n(A)) \), [4];
(iii) nano pre-open if \(A \subseteq I_n(C_n(A)) \), [4];
(iv) nano \(b\)-open if \(A \subseteq I_n(C_n(A)) \cup C_n(I_n(A)) \), [5];
(v) nano \(\beta\)-open if \(A \subseteq C_n(I_n(C_n(A))) \), [12].

The complements of the above mentioned sets are called their respective closed sets.

Definition 1.2. [4] A subset \(A \) of a nano space \((U, \mathcal{N})\) is called nano regular-open (written in short as \(nr\)-open) \(A = I_n(C_n(A)) \).

The complement of \(nr\)-open set is said to be a \(nr\)-closed set.

Definition 1.3. [1] Let \(A \) be a subset of a space \((U, \mathcal{N})\) is nano \(\pi\)-open (written in short as \(n\pi\)-open) if the finite union of \(nr\)-open sets.

The complement of \(n\pi\)-open set is said to be a \(n\pi\)-closed set.

Definition 1.4. A subset \(A \) of a space \((U, \mathcal{N})\) is called

(i) nano \(g\)-closed (written in short as \(ng\)-closed) if \(C_n(A) \subseteq B \), whenever \(A \subseteq B \) and \(B \) is \(n\)-open, [2];
(ii) nano \(\pi g\)-closed (written in short as \(n\pi g\)-closed) if \(C_n(A) \subseteq B \), whenever \(A \subseteq B \) and \(B \) is \(n\pi\)-open, [9];
(iii) nano \(\alpha g\)-closed (written in short as \(n\alpha g\)-closed) if \(C_{n\alpha}(A) \subseteq B \), whenever \(A \subseteq B \) and \(B \) is \(n\alpha\)-open, [9];
(iv) nano \(\pi g\alpha\)-closed (written in short as \(n\pi g\alpha\)-closed) if \(C_{n\alpha}(A) \subseteq B \) whenever \(A \subseteq B \) and \(B \) is \(n\pi\)-open, [10].

The complements of the above mentioned sets are called their respective open sets.
Definition 1.5. [6] A subset A of a space (U, N, I) is n^*-dense in itself (resp. n^*-perfect and n^*-closed) if $A \subseteq A_n^*$ (resp. $A = A_n^{*o}$, $A_n^* \subseteq A$).

The complement of a n^*-closed set is said to be a n^*-open set.

Definition 1.6. [7] An ideal I in a space (U, N, I) is called \mathfrak{K}-codense ideal if $\mathfrak{K} \cap I = \{\phi\}$.

Definition 1.7. [11] A subset A of space (U, N, I) is said to be

(i) nano α-open (written in short as α-nI-open) if $A \subseteq I_n(C_n^*(I_n(A)))$,
(ii) nano semi-α-open (written in short as semi-α-nI-open) if $A \subseteq C_n^*(I_n(A))$,
(iii) nano pre-α-open (written in short as pre-α-nI-open) if $A \subseteq I_n(C_n^*(A))$,
(iv) nano β-I-open (written in short as β-nI-open) if $A \subseteq C_n^*(I_n(C_n^*(A)))$.

The complements of the above mentioned sets are called their respective closed sets.

Definition 1.8. A subset A of a space (U, N, I) is called a

(i) nano I_g-closed (written in short as I_{ng}-closed) if $A_n^* \subseteq B$ whenever $A \subseteq B$ and B is n-open, [6];
(ii) nano I_ω-closed (or) nano I_g-closed (written in short as $I_{ng\omega}$-closed) if $A_n^* \subseteq B$ whenever $A \subseteq B$ and B is $n\pi$-open, [8].

The complements of the above mentioned sets are called their respective open sets.

2. πg-CLOSED SETS IN IDEAL NANOTOPOLOGICAL SPACES

Definition 2.1. A subset A of an ideal nano space (U, N, I) is called a nano I_{ng}-closed (written in short as $I_{ng\pi}$-closed) if $A \subseteq H$, $H \in n\pi$-open $\Rightarrow A_n^* \subseteq H$.

Nano I_{ng}-open (written in short as $I_{ng\pi}$-open) if $A = H - A$ (where A denotes the complement operator and A is $I_{ng\pi}$-closed).

Definition 2.2. A subset A of an ideal nano space (U, N, I) is called a

(i) nano \mathcal{D}_I-set if $A = H \cap V$, where H is a $n\pi$-open set and V is a n^*-perfect set.
(ii) nano \mathcal{B}_I-set if $A = H \cap V$, where H is a $n\pi$-open set and V is a n^*-closed set.
Theorem 2.1. Each $n\pi g$-closed set is $I_{n\pi g}$-closed.

Proof. Let A be a every $n\pi g$-closed set. Then $A \subseteq H$, $H \in n\pi$-open $\implies C_n(A) \subseteq H$. Since $A^*_n \subseteq C_n(A) \subseteq H$, we have $A^*_n \subseteq H$ and hence A is $I_{n\pi g}$-closed. \hfill \Box

Theorem 2.2. If (U, \mathcal{N}, I) is any ideal nano space and $A \subseteq U$, then the following hold.

(i) If $I = \phi$, then A is $I_{n\pi g}$-closed \iff A is $n\pi g$-closed.

(ii) If $I = \aleph_s$, then A is $I_{n\pi g}$-closed \iff A is $n\pi g\alpha$-closed.

Proof. The proof follows from the fact that $A^*_n(\{\phi\}) = C_n(A)$ and $A^*_n(\aleph_s) = C_{n\alpha}(A)$. \hfill \Box

Theorem 2.3. If A and B is $I_{n\pi g}$-closed then $A \cup B$ is $I_{n\pi g}$-closed.

Proof. Suppose that $A \cup B \subseteq H$ and H is $n\pi$-open, then $A, B \subseteq H$. Since A and B are $I_{n\pi g}$-closed, $A^*_n \subseteq H$ and $B^*_n \subseteq H$. Thus, $A \cup B$ is $I_{n\pi g}$-closed. \hfill \Box

Theorem 2.4. If a subset A of (U, \mathcal{N}, I) is $I_{n\pi g}$-closed, then $C^*_n(A) - A$ contains no nonempty $n\pi$-closed set.

Proof. Suppose that A is $I_{n\pi g}$-closed and F be a $n\pi$-closed subset of $C^*_n(A) - A$. Then $A \subseteq U - F$. Since $U - F$ is $n\pi$-open and A is $I_{n\pi g}$-closed, $C^*_n(A) \subseteq U - F$.

Consequently, $F \subseteq U - C^*_n(A)$. We have $F \subseteq C^*_n(A)$. Thus, $F \subseteq C^*_n(A) \cap (U - C^*_n(A)) = \phi$ and so $C^*_n(A) - A$ contains no nonempty $n\pi$-closed set. \hfill \Box

Corollary 2.1. Let (U, \mathcal{N}, I) be an ideal nano space and A be an $I_{n\pi g}$-closed set. Then the following are equivalent.

(i) A is a $n\ast$-closed set.

(ii) $C^*_n(A) - A$ is a $n\pi$-closed set.

(iii) $A^*_n - A$ is a $n\pi$-closed set.

Proof. (i) \implies (ii) : If A is $n\ast$-closed set, then $C^*_n(A) - A = \phi$ and so $C^*_n(A) - A$ is $n\pi$-closed.

(ii) \implies (i) : Suppose $C^*_n(A) - A$ is $n\pi$-closed. Since A is $I_{n\pi g}$-closed, By Theorem 2.4 $C^*_n(A) - A = \phi$ and so A is $n\ast$-closed.

(ii) \iff (iii) : Follows from the fact that $C^*_n(A) - A = A^*_n - A$. \hfill \Box

Theorem 2.5. In a space (U, \mathcal{N}, I), every subset is $I_{n\pi g}$-closed \iff every $n\pi$-open set is $n\ast$-closed.
Theorem 2.10. For a subset $n \star$ is a H and $V = A \ I$

Proof. Suppose that $I H$ whenever A is any A-closed set. Since A is $n \star$-open and the only $n \star$-open set containing $\{x\}^c$ is the space (U, N, I) itself.

Therefore, $C^*_n(\{x\})^c U$ and so $\{x\}^c$ is I_{n^g}-closed. \square

Remark 2.1. If A is $n \star$-open and I_{n^g}-closed, then A is $n \star$-closed.

Theorem 2.6. For each $x \in (U, N, I)$ either $\{x\}$ is $n \pi$-closed or $\{x\}^c$ is I_{n^g}-closed.

Proof. Suppose that $\{x\}$ is not $n \pi$-closed, then $\{x\}^c$ is not $n \pi$-open and the only $n \pi$-open set containing $\{x\}^c$ is the space (U, N, I) itself.

Therefore, $C^*_n(\{x\}) \subseteq U$ and so $\{x\}^c$ is I_{n^g}-closed. \square

Theorem 2.7. If A is an I_{n^g}-closed set such that $A \subseteq B \subseteq A^*$, then B is also an I_{n^g}-closed set.

Proof. Let H be any $n \pi$-open set such that $B \subseteq H$, then $A \subseteq H$. Since A is I_{n^g}-closed, we have $A^*_n \subseteq H$. Now, $B^*_n \subseteq (A^*_n)^* \subseteq A^*_n \subseteq H$. Therefore, B is I_{n^g}-closed. \square

Theorem 2.8. A subset A of an ideal nano space (U, N, I) is I_{n^g}-open $\iff F \subseteq I^*_n(A)$ whenever F is $n \pi$-closed and $F \subseteq A$.

Proof. Suppose that $F \subseteq I^*_n(A)$ whenever F is $n \pi$-closed and $F \subseteq A$. Let $A^c \subseteq H$, whenever H is $n \pi$-open. Then $H^c \subseteq A$ and H^c is $n \pi$-closed, therefore $H^c \subseteq I^*_n(A)$, which implies that $C^*_n(A^c) \subseteq H$. Hence, A^c is I_{n^g}-closed and so A is I_{n^g}-open. Conversely, suppose that A is I_{n^g}-open, $F \subseteq A$ and F is $n \pi$-closed. Then F^c is $n \pi$-open and $A^c \subseteq F^c$. Therefore, $C^*_n(A^c) \subseteq F^c$ and so $F \subseteq I^*_n(A)$. \square

Theorem 2.9. A subset A of an ideal nano space (U, N, I) is a nano \mathcal{D}-set and an I_{n^g}-closed set, then A is a $n \star$-closed set.

Proof. Let A be a nano \mathcal{D}-set and a I_{n^g}-closed set. Since A is a nano \mathcal{D}-set, $A = H \cap V$, where H is a $n \pi$-open set and V is a $n \star$-perfect set. Now, $A = H \cap V \subseteq H$ and A is a I_{n^g}-closed set implies that $A^*_n \subseteq H$. Also, $A = H \cap V \subseteq V$ and V is $n \star$-perfect set implies that $A^*_n \subseteq V$. Thus, $A^*_n \subseteq H \cap V = A$. Hence, A is a $n \star$-closed set. \square

Theorem 2.10. For a subset A of an ideal nano space (U, N, I), A is a $n \star$-closed set $\iff A$ is a nano \mathcal{B}-set and a I_{n^g}-closed set.
Definition 3.3. A map $f: (U, N, I) \rightarrow (F, \mathcal{X})$ is called nano I_{ng}-continuous (written in short as I_{ng}-continuous) if $f^{-1}(A)$ is I_{ng}-closed in (U, N, I) for every n-closed set A of F.

Definition 3.2. A map $f: (U, N) \rightarrow (F, \mathcal{X})$ is called a

(i) a nano π-space (written in short as $n\pi$-space) if $f(A)$ is $n\pi$-closed in (F, \mathcal{X}) for every $n\pi$-closed set A in (U, N).

(ii) a nano regular map (written in short as nr-map) if $f^{-1}(A)$ is nr-closed in (U, N) for every nr-closed set K of F.

Theorem 3.1. For a map $f: (U, N, I) \rightarrow (F, \mathcal{X})$, the following hold.

(i) f is $n\pi g$-continuous \Rightarrow f is I_{ng}-continuous.

(ii) f is I_{ng}-continuous \Rightarrow f is I_{ng}-continuous.

Definition 3.3. A map $f: (U, N, I) \rightarrow (F, \mathcal{X}, I)$ is called nano I_{ng}-irresolute (written in short as I_{ng}-irresolute) if $f^{-1}(A)$ is I_{ng}-closed in (U, N, I) for every I_{ng}-closed set A of (F, \mathcal{X}, I).

Theorem 3.2. If $f: (U, N, I) \rightarrow (F, \mathcal{X}, I)$ is I_{ng}-continuous and $n\pi$-space, then f is I_{ng}-irresolute.

Proof. Assume that A is I_{ng}-closed in F. Let $f^{-1}(A) \subseteq H$, where H is $n\pi$-open in U. Then $(U - H) \subseteq f^{-1}(F - A)$ and hence $f(U - H) \subseteq F - A$. Since f is $n\pi$-space, $f(U - H)$ is $n\pi$-closed. Then, since $F - A$ is I_{ng}-open. By Theorem 2.8, $f(U - H) \subseteq I_n^*(F - A) = F - C_n^*(A)$. Thus, $f^{-1}(C_n^*(A)) \subseteq H$. Since f is I_{ng}-continuous, $f^{-1}(C_n^*(A))$ is I_{ng}-closed. Therefore, $C_n^*(f^{-1}(C_n^*(A))) \subseteq H$.

3. On Nano I_{ng}-Continuous Maps
and hence $C_n(f^{-1}(A)) \subseteq C_n(f^{-1}(C_n(A))) \subseteq H$ which proves that $f^{-1}(A)$ is $I_{n\pi g}$-closed and therefore f is $I_{n\pi g}$-irresolute.

\[\square\]

Definition 3.4. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$ is called almost nano $I_{\pi g}$-continuous (written in sort as almost $I_{n\pi g}$-continuous) if $f^{-1}(A)$ is $I_{n\pi g}$-closed in (U, \mathcal{N}, I) for every A is n-regular closed in F.

Theorem 3.3. For a map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$, the following are equivalent.

(i) f is almost $I_{n\pi g}$-continuous.

(ii) $f^{-1}(A) \in I_{n\pi g}$-open for every A is n-regular open in F.

(iii) $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$-open for every $A \in \mathcal{X}$.

(iv) $f^{-1}(C_n(I_n(A))) \in I_{n\pi g}$-closed for every n-closed set A of F.

Proof. (i) \iff (ii) : Obvious.

(ii) \iff (iii) : Assuming that A is n-regular open in F, we have $A = I_n(C_n(A))$ and $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$-open. Conversely, suppose $A \in \mathcal{X}$, we have $I_n(C_n(A)) \in n$-regular open (F) and $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$-open.

(iii) \iff (iv) : Let A be a n-closed set in F. Then $F - A \in \mathcal{X}$. We have $f^{-1}(I_n(C_n(F - A))) = f^{-1}(F - (C_n(I_n(A)))) = U - f^{-1}(C_n(I_n(A))) \in I_{n\pi g}$-open. Hence, $f^{-1}(I_n(C_n(A))) \in I_{n\pi g}$-closed. Converse can be obtained similarly. \square

Theorem 3.4. The following hold for the maps $f : (U, \mathcal{N}, I) \to (F, \mathcal{X}, J)$ and $g : (F, \mathcal{X}, J) \to (G, \mathcal{M})$,

(i) $g \circ f$ is $I_{n\pi g}$-continuous, if f is almost $I_{n\pi g}$-continuous and g is completely nano continuous.

(ii) $g \circ f$ is $I_{\pi g}$-continuous, if f is $I_{n\pi g}$-continuous and g is nano continuous.

(iii) $g \circ f$ is $I_{\pi g}$-continuous, if f is $I_{n\pi g}$-irresolute and g is $I_{n\pi g}$-continuous.

(iv) $g \circ f$ is almost $I_{\pi g}$-continuous, if f is almost $I_{n\pi g}$-continuous and g is nano n-map.

(v) $g \circ f$ is almost $I_{\pi g}$-continuous, if f is $I_{n\pi g}$-irresolute and g is almost $I_{n\pi g}$-continuous.

(vi) $g \circ f$ is almost $I_{\pi g}$-continuous, if f is $I_{n\pi g}$-continuous and g is almost $I_{n\pi g}$-continuous.

Definition 3.5. A map $f : (U, \mathcal{N}, I) \to (F, \mathcal{X})$ is called nano \mathcal{B}_I-continuous (written in sort as \mathcal{B}_{nI}-continuous) if $f^{-1}(A)$ is nano \mathcal{B}_I-set in (U, \mathcal{N}, I) for every n-closed set A of F.
Theorem 3.5. A map \(f : (U, N, I) \to (F, \mathcal{X}) \) is \(n^* \)-continuous \(\iff \) \(\mathcal{B}_{nI} \)-continuous and \(I_{n\pi g} \)-continuous.

Proof. This is an immediate consequence of Theorem 2.10. \(\square \)

Remark 3.1. The concepts of \(\mathcal{B}_{nI} \)-continuity and the concepts of \(I_{n\pi g} \)-continuity are independent of each other as shown in the following Example.

Example 1. Let \(U = \{a, b, c\} \) be a non empty finite set with

(i) \(U/R = \{\{a\}, \{b\}, \{c\}\} \) and \(X = \{a, b\} \) then \(\mathcal{N} = \{\phi, U, \{a\}, \{b\}, \{a, b\}\} \).

(ii) \(U/R = \{\{a, b\}, \{c\}\} \) and \(X = \{b, c\} \) then \(\mathcal{X} = \{\phi, U, \{c\}, \{a, b\}\} \).

(iii) \(U/R = \{\{b, c\}, \{a\}\} \) and \(X = \{b, c\} \) then \(\mathcal{M} = \{\phi, U, \{b, c\}\} \).

And let ideal be \(I = \{\phi, \{c\}\} \).

In the ideal nano space \((U, N, I) \), then

(i) the identity function \(F : (U, N, I) \to (U, \mathcal{M}) \) is \(\mathcal{B}_{nI} \)-continuous but not \(\mathcal{B}_{nI} \)-continuous.

(ii) the identity function \(G : (U, \mathcal{X}, I) \to (U, \mathcal{M}) \) is \(I_{n\pi g} \)-continuous but not \(\mathcal{B}_{nI} \)-continuous.

References

School of Mathematics, Madurai Kamaraj University,
Madurai-21, Tamil Nadu, India
E-mail address: jiometha@yahoo.com

Department of Mathematics
School of Mathematics, Madurai Kamaraj University,
Madurai-21, Tamil Nadu, India
E-mail address: rasoka_mku@yahoo.co.in

Department of Mathematics
Tirunelveli Dakshina Mara Nadar Sangam College, T. Kallikulam - 627 113
Tirunelveli District, Tamil Nadu, India
E-mail address: sekarmelakka@gmail.com