SIGNED DOMINATION NUMBER OF n-STAR GRAPH

B. SHEKINAHENRY1 AND Y. S. IRINE SHEELA

ABSTRACT. The n-star graph S_n is a simple graph whose vertex set is the set of all $n!$ permutations of \{1, 2, \ldots, n\} and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one $i, i \neq 1$. In this paper we find the signed domination number γ_s of S_n. We also determine the lower bound of the signed domination number γ_s, for the complement of S_n, the lower bound of the sum and product of the signed domination number of n-star graph S_n and its complement.

1. INTRODUCTION

By a graph we mean a finite, undirected, connected graph without loops or multiple edges. Terms not defined here are used in the sense of Haynes et al. [4] and Harary [3]. The n-star graph S_n is first introduced by Akers and Krishnamurthy [1]. The vertex set of S_n is the set of all $n!$ permutations of \{1, 2, \ldots, n\} and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one $i, i \neq 1$. In this paper we find the signed domination number for odd and even n of S_n. We also obtain lower bound of signed domination number for the complement S_n and sum and product of signed domination number of S_n and its complement. Let $G=(V,E)$ be a graph. For a real valued function $f: V \rightarrow R$, the weight of f is $w(f) = \sum_{v \in V} f(v)$ and for $S \subseteq V$ we define $f(S) = \sum_{v \in S} f(v)$. So $w(f) = f(V)$. A signed dominating function is defined as a function $f: V \rightarrow \{-1, 1\}$ such that $\sum_{u \in N[v]} f(u) \geq 1$, for all $v \in V$.

1 Corresponding author

2010 Mathematics Subject Classification. 05C69.

Key words and phrases. Signed Dominating Function, Signed Domination Number, n-star graph.
The signed domination number for a graph G is $\gamma_s(G) = \min \{w(f) | f \text{ is a signed dominating function on } G\}$. The upper signed domination number for a graph $\Gamma_s(G) = \max \{w(f) | f \text{ is a signed dominating function on } G\}$, [2,4].

Theorem 1.1. [4] For every k-regular graph G of order n, $\gamma_s(G) \geq n/(k + 1)$.

Theorem 1.2. [4] For every k-regular graph G of order n, with k odd, $\gamma_s(G) \geq 2n/(k + 1)$.

2. **Main Results**

Theorem 2.1. For n-star graph, with n odd the signed domination number $\gamma_s(S_n) = (n - 1)!$.

Proof.

Case 1: For $n = 1$.

Since there is only one vertex say $v(1)$ define $f : V(S_1) \rightarrow \{-1, 1\}$, such that $f(v_1) = 1$. Then f is the only signed dominating function. The signed domination number of S_1 is $1 = (1 - 1)!$. Therefore $\gamma_s(S_n) = (n - 1)!$, for $n = 1$.

Case 2: For $n > 1$ and odd. S_n is a $(n - 1)$ regular graph. Since n is odd, $(n - 1)$ is even. We have for every k-regular graph G of order n, $\gamma_s(G) \geq n/(k + 1)$. Therefore S_n,

$\gamma_s(S_n) \geq n/(n - 1 + 1) = (n - 1)!/n = (n - 1)!$.

Let $A_i = \{\alpha \in V(S_n) | \alpha(1) = 1, \alpha(1) = 2, \ldots \alpha(1) = i, \text{ where } i = (n - 1)/2\}$.

Define a function $f : V(S_n) \rightarrow \{-1, 1\}$ such that

$$f(\alpha) = \begin{cases}
-1 & \text{for } \alpha \in A_i \\
1 & \text{for } \alpha \notin A_i
\end{cases}$$

Then f is a signed dominating function for S_n.

Now for finding the weight of signed dominating function for S_n, there are $(n - 1)!$ elements in each $\alpha(1) = i, i = 1, 2, \ldots, n$. Hence there are $(n - 1)!^2$ vertices for which $f(\alpha) = -1$. Therefore there are $n! - [(n - 1)!^2(n - 1)!]$ vertices for which $f(\alpha) = 1$. Then weight of the signed dominating function f is

$$w(f) = \left[\frac{(n + 1)}{2}(n - 1)!\right] - \left[\frac{(n - 1)}{2}(n - 1)!\right] = \left[\frac{(n + 1)}{2} - \frac{(n - 1)}{2}\right] (n - 1)! = (n - 1)!$$.
Hence we get a signed dominating function f of S_n with weight $(n - 1)!$. But $\gamma_s(S_n) \geq (n - 1)!$.

Therefore $\gamma_s(S_n) = (n - 1)!$. \hfill \Box

Theorem 2.2. For n-star graph, the signed domination number, $\gamma_s(S_n) = 2(n-1)!$ where n is even.

Proof.

Case 1: $n = 2$.
There are two vertices in S_2. Define $f : V(S_1) \rightarrow \{-1, 1\}$, such that $f(v_1) = 1$ and $f(v_2) = 1$. Then f is the only signed dominating function. The signed domination number of S_2 is $2 = 2(2-1)!$. Therefore $\gamma_s(S_n) = 2(2-1)!$, for $n = 2$.

Case 2: $n > 2$ and even.
S_n is a $(n - 1)$ regular graph. Since n is even, $(n - 1)$ is odd. We have for every k-regular graph G of order n, with k odd, $\gamma_s(G) \geq 2n/(k + 1)$. Therefore for n-star graph,

$$\gamma_s(S_n) \geq 2n!/(n - 1 + 1) = 2(n - 1)!n/n = 2(n - 1)!.$$

Let $A_i = \{\alpha \in V(S_n)|\alpha(1) = 1, \alpha(1) = 2, \ldots, \alpha(1) = i, \text{where } i = \frac{n}{2} - 1\}$. Define a function $f : V(S_n) \rightarrow \{-1, 1\}$, such that

$$f(\alpha) = \begin{cases} -1 & \text{for } \alpha \in A_i \\ 1 & \text{for } \alpha \notin A_i \end{cases}.$$

Then f is signed dominating function of S_n.

Now for finding the weight of signed dominating function for S_n, there are $(n - 1)!$ elements in each $\alpha(1) = i, i = 1, 2, \ldots, n$.

Hence there are $\left(\frac{n}{2} - 1\right)(n - 1)!$ vertices for which $f(\alpha) = -1$. Therefore there are $n! - \left[\left(\frac{n}{2} - 1\right)(n - 1)!\right] = \left(\frac{n}{2} + 1\right)(n - 1)!$ vertices for which $f(\alpha) = 1$. Then weight of the signed dominating function f is

$$w(f) = \left[\left(\frac{n}{2} + 1\right)(n - 1)!\right] - \left[\left(\frac{n}{2} - 1\right)(n - 1)!\right] = \left[\left(\frac{n}{2} + 1\right) - \left(\frac{n}{2} - 1\right)\right](n - 1)! = 2(n - 1)!.$$

Hence we get a signed dominating function f of S_n with weight $2(n - 1)!$. But $\gamma_s(S_n) \geq 2(n - 1)!$.

Hence $\gamma_s(S_n) = 2(n - 1)!$. \hfill \Box

Theorem 2.3. The complement $\overline{S_n}$ of n-star graph is $n! - n$ regular.
Proof. Any two vertices of $\overline{S_n}$ is adjacent if it is not adjacent in S_n. Clearly S_n is $(n-1)$-regular. Also since there are $n! - 1$ vertices other than a vertex v_i in $\overline{S_n}$, each vertex v_i in $\overline{S_n}$ is adjacent with $(n! - 1) - (n-1) = n! - n$ vertices. Hence $\overline{S_n}$ is $n! - n$-regular.

Theorem 2.4. The signed domination number $\gamma(\overline{S_n}) \geq 2n!/(n! - n + 1)$ if n is odd and $\gamma(\overline{S_n}) \geq n!/(n! - n + 1)$ if n is even.

Proof. $\overline{S_n}$ is $n!-n$ regular. Also if n is odd, then $n! - n$ is odd. We have for every k-regular graph G of order n, with k odd $\gamma(\overline{S_n}) \geq 2n/((k+1))$.

Therefore for the complement of n-star graph $\gamma(\overline{S_n}) \geq 2n!/(n! - n + 1)$.

Also if n is even, then $(n! - n)$ is even. We have for every k-regular graph G of order n, $\gamma(\overline{S_n}) \geq n/(k+1)$.

Therefore for the complement of n-star graph $\gamma(\overline{S_n}) \geq n!/(n! - n + 1)$.

Theorem 2.5. The sum of the signed domination number of S_n and its complement $\overline{S_n}$ is

$$\gamma(S_n) + \gamma(\overline{S_n}) \geq \frac{(n-1)!(n! + n + 1)}{(n! - n + 1)},$$

for odd n.

Proof. By theorem 2.1, $\gamma(S_n) = (n-1)!$. Also by theorem 2.4, $\gamma(\overline{S_n}) \geq 2n!/(n! - n + 1)$, if n is odd. Hence it follows that

$$\gamma(S_n) + \gamma(\overline{S_n}) \geq (n-1)! + 2n!/(n! - n + 1)$$

$$= \frac{(n-1)!(n! - n + 1) + 2(n-1)!n}{(n! - n + 1)} = \frac{(n-1)!(n! - n + 1 + 2n)}{(n! - n + 1)} = \frac{(n-1)!(n! + n + 1)}{(n! - n + 1)}.$$

Hence $\gamma(S_n) + \gamma(\overline{S_n}) \geq \frac{(n-1)!(n! + n + 1)}{(n! - n + 1)}$, for n odd.

Theorem 2.6. The sum of the signed domination number of n-star graph and its complement $\overline{S_n}$ is

$$\gamma(S_n) + \gamma(\overline{S_n}) \geq \frac{(n-1)!(2n - n + 1)}{(n! - n + 1)};$$

for even n.

Proof. By theorem 2.2, $\gamma(S_n) = 2(n - 1)!$. Also by theorem 2.4, $\gamma(\overline{S}_n) \geq n!/(n! - n + 1)$. Hence it follows that

$$\gamma(S_n) + \gamma(\overline{S}_n) \geq 2(n - 1)! + n!/(n! - n + 1)$$

$$= 2(n - 1)!((n! - n + 1) + (n - 1)!n) = (n - 1)!(2n! - 2n + 1 + n)/(n! - n + 1)$$

$$= (n - 1)!(2n! - n + 1)/(n! - n + 1).$$

Hence $\gamma(S_n) + \gamma(\overline{S}_n) \geq (n - 1)!(2n! - n + 1)/(n! - n + 1)$ for n even. □

Theorem 2.7. The product of the signed domination number of n-star graph and its complement is

$$\gamma(S_n)\gamma(\overline{S}_n) \geq \frac{(n - 1)!2n!}{(n! - n + 1)},$$

for n odd and

$$\gamma(S_n)\gamma(\overline{S}_n) \geq \frac{2(n - 1)!n!}{(n! - n + 1)},$$

n even.

Proof. By theorem 2.1, $\gamma(S_n) = (n - 1)!$ and by theorem 2.4, $\gamma(\overline{S}_n) \geq 2n!/(n! - n + 1)$ for odd n. Hence it follows that $\gamma(S_n)\gamma(\overline{S}_n) \geq (n - 1)!2n!/(n! - n + 1)$, for odd n. Also by theorem 2.2, $\gamma(S_n) = 2(n - 1)!$ and by theorem 2.5, $\gamma(\overline{S}_n) \geq n!/(n! - n + 1)$ for even n. Hence it follows that for even n

$$\gamma(S_n)\gamma(\overline{S}_n) \geq \frac{2(n - 1)!n!}{(n! - n + 1)}. □$$

References

DEPARTMENT OF MATHEMATICS
SCOTT CHRISTIAN COLLEGE, NAGERCOIL
MANONMANIAM SUNDARANAR UNIVERSITY
TIRUNELVELI, TAMILNADU, INDIA
Email address: shekihenrymatz@gmail.com

DEPARTMENT OF MATHEMATICS
SCOTT CHRISTIAN COLLEGE, NAGERCOIL
MANONMANIAM SUNDARANAR UNIVERSITY
TIRUNELVELI, TAMILNADU, INDIA
Email address: irinesheela@gmail.com