IDEAL THEORY IN NEAR-SEMIRINGS AND ITS APPLICATION TO AUTOMATA

C. JENILA and P. DHEENA

Abstract. In this paper we develop ideal theory in near-semirings. We use the ideal theory to find the necessary and sufficient conditions for a linear sequential machine to be minimal.

1. Introduction

It has been shown that a homomorphic group-automaton \(A = (Q, A, B, F, G) \), where \(Q \) is a state set, \(A \) is an input set and \(B \) is an output set are groups and \(F : Q \times A \rightarrow Q \) and \(G : Q \times A \rightarrow B \), the state-transition function and output function respectively, are homomorphisms, is minimal if and only if the \(N(A) \)-group \(Q \) is generated by 0 and does not contain non-zero ideals which are annihilated by \(g_0 \) where \(g_0 : Q \rightarrow B \) ([3], Theorem 9.259). Pilz [3] considered linear sequential machines in which the state set forms a group.

Krishna and Chatterjee [2] considered a generalized linear sequential machine \(\mathcal{M} = (Q, A, B, F, G) \) where \(Q, A, B \) are semigroups and \(R \)-semimodules for some semiring \(R \) and \(F : Q \times A \rightarrow Q \) and \(G : Q \times A \rightarrow B \) are \(R \)-homomorphisms. They have obtained a necessary condition for the above generalized sequential machine to be minimal. So naturally one is interested to find a necessary and sufficient conditions for the above generalized linear sequential machine to be minimal. To achieve that, we develop ideal theory in a

1corresponding author

2010 Mathematics Subject Classification. 16Y30, 16Y60.

Key words and phrases. Near-semiring, ideal, linear sequential machine.
S-semigroup Γ, where S is a near-semiring. Using this ideal theory we find the necessary and sufficient conditions for a generalized linear sequential machine to be minimal. For the terminology and notation used in this paper we refer to Pilz [3], Krishna and Chatterjee [2].

2. Near-semirings

A near-semiring is a nonempty set S with two binary operations \cdot and \cdot' such that

\begin{enumerate}
 \item (S, \cdot) is a semigroup,
 \item (S, \cdot') is a semigroup,
 \item $(x \cdot y)z = xz \cdot yz$ for all $x, y, z \in S$, and
 \item $0s = 0$ for all $s \in S$.
\end{enumerate}

In the near-semiring (S, \cdot, \cdot'), if (S, \cdot) has identity then S is a near-semiring with identity. Now we give a natural example of the near-semiring. Let (Γ, \cdot) be a semigroup with identity 0. If $M(\Gamma)$ is the set of all mappings from Γ into Γ then $M(\Gamma)$ is a near-semiring under pointwise addition and composition. $M(\Gamma)$ is neither a ring, nor a near-ring, nor a semiring. A semigroup (S, \cdot) is an inverse semigroup if for each $a \in S$, there exists a unique element $a' \in S$ such that $a \cdot a' \cdot a = a$ and $a' \cdot a \cdot a' = a'$. Then a' is the additive inverse of a. A near-semiring (S, \cdot, \cdot') is an additive inverse near-semiring if (S, \cdot') is an inverse semigroup. If A and B are any two non-empty sets of S, we define $AB = \{ab | a \in A, b \in B\}$. For $x, y \in S$, $x = (x')', (x+y)' = y' + x'$ and $(xy)' = x'y$. We have $E^+(S) = \{a \in S : a + a = a\}$.

The properties of additive inverse semiring were obtained by Bandelt and Petrich [1] and the properties of regularity in an additive inverse semiring were obtained by Sen and Maity [4]. They have assumed the three conditions.

\begin{enumerate}
 \item $a(a + a') = (a + a')$
 \item $a(b + b') = (b + b')a$
 \item $a + a(b + b') = a$.
\end{enumerate}

An element of $M(\Gamma)$ is said to be an affine mapping if it is a sum of an endomorphism and a constant map on Γ. The set of affine mappings on Γ is a subsemigroup of $M(\Gamma)$, denoted by $M_{aff}(\Gamma)$. Throughout this paper S denotes a near-semiring unless otherwise specified.
3. IDEAL THEORY

Now we develop ideal theory in a S-semigroup Γ.

Definition 3.1. Let S be a near-semiring. A semigroup $(\Gamma, +)$ is said to be an S-semigroup if there exists a mapping $(x, \gamma) \mapsto x\gamma$ of $S \times \Gamma \rightarrow \Gamma$ such that for all $x, y \in S$, $\gamma \in \Gamma$,

1. $(x + y)\gamma = x\gamma + y\gamma$,
2. $(xy)\gamma = x(y\gamma)$, and
3. $0\gamma = 0_{\Gamma}$, where 0_{Γ} is the zero of Γ.

Definition 3.2. A subsemigroup Δ of $S\Gamma$ with $S\Delta \subseteq \Delta$ is said to be an S-subsemigroup of Γ.

Definition 3.3. Let $S\Gamma_1$, $S\Gamma_2$ be S-semigroups. A map $f : S\Gamma_1 \rightarrow S\Gamma_2$ is called an S-homomorphism if $f(\gamma + \gamma_1) = f(\gamma) + f(\gamma_1)$ and $f(s\gamma) = sf(\gamma)$ for all $\gamma, \gamma_1 \in S\Gamma_1$ and $s \in S$.

Note that $f(0_{\Gamma_1}) = 0_{\Gamma_2}$.

Definition 3.4. If f is an S-homomorphism of Γ_1 into Γ_2, then the kernel of f is defined by $K = \{\gamma_1 \in \Gamma_1 | f(\gamma_1) = 0_{\Gamma_2}\}$.

Hereafter $(\Gamma, +)$ is assumed to be inverse semigroup with $E^+(\Gamma)$ in the center of $(\Gamma, +)$.

Definition 3.5. A non-empty subset I of an S-semigroup Γ is an ideal of $S\Gamma$ ($I \triangleleft_s \Gamma$) if

1. $E^+(\Gamma) \subseteq I$,
2. $i_1 + i_2 \in I$ for all $i_1, i_2 \in I$,
3. $\gamma + i + \gamma' \in I$ for all $\gamma \in \Gamma, i \in I$,
4. $s(i + \gamma) + (s\gamma)' \in I$ for all $\gamma \in \Gamma, i \in I$ and $s \in S$,
5. If $e + \gamma \in I$ implies $\gamma \in I$ for any $e \in E^+(\Gamma)$.

Theorem 3.1. If a non-empty subset I of an S-semigroup Γ satisfies the conditions (1), (2), (3), (4) and (5) given above then I is the kernel of an S-homomorphism.

Proof. Define the relation ρ on Γ by $a \rho b$ for all $a, b \in \Gamma$ if and only if $i_1 + a = i_2 + b$ for some $i_1, i_2 \in I$. Clearly ρ is reflexive and symmetric. Now we claim that ρ is transitive. Assume that $a \rho b$ and $b \rho c$. Then $i_1 + a = i_2 + b$ and $i_3 + b = i_4 + c$ for
some \(i_1, i_2, i_3, i_4 \in I \). Now \(i_2 + i_3 + b = i_2 + i_4 + c \). Then \(i_2 + i_3 + b + b' + b = i_2 + i_4 + c \). Thus \(i_2 + b + b' + i_3 + b = i_2 + i_4 + c \). Hence \(i_1 + a + i_5 = i_2 + i_4 + c \) for some \(i_5 \in I \). Thus \(i_1 + a + a' + a + i_5 = i_2 + i_4 + c \). Then \(i_1 + a + i_5 + a' + a = i_2 + i_4 + c \). Thus \(i_1 + i_6 + a = i_2 + i_4 + c \) for some \(i_6 \in I \). Hence \(a pc \).

Let \(\Gamma / \rho = \{ [a] \mid a \in \Gamma \} \). Let us define \(+ \) in \(\Gamma / \rho \) as \([a] + [b] = [a + b] \) and the map \(S \times \Gamma / \rho \to \Gamma / \rho \) as \(s [a] = [sa] \) for all \(a, b \in \Gamma \) and \(s \in S \). Suppose that \([a] = [a_1] \) and \([b] = [b_1] \) for some \(a, a_1, b, b_1 \in \Gamma \). Then \(i_1 + a = i_2 + a_1 \) and \(i_3 + b = i_4 + b_1 \) for some \(i_1, i_2, i_3, i_4 \in I \). Now \(i_1 + a + i_3 + b = i_2 + a_1 + i_4 + b_1 \). Hence \(i_1 + a + i_3 + a' + a + b = i_2 + a_1 + i_4 + a' + a_1 + b_1 \). Then \(i_1 + i_5 + a + b = i_2 + i_6 + a_1 + b_1 \) for some \(i_5, i_6 \in I \). Thus, \([a + b] = [a_1 + b_1] \).

Suppose that \([a] = [a_1] \) for some \(a, a_1 \in \Gamma \). Then \(i_1 + a = i_2 + a_1 \) for some \(i_1, i_2 \in I \). Let \(s \in S \). Since \(s(i_1 + a) + (sa)' \in I \) and \(s(i_2 + a_1) + (sa_1)' \in I \), we have \(s(i_1 + a) + (sa)' + sa = i_3 + sa \) and \(s(i_2 + a_1) + (sa_1)' + sa_1 = i_4 + sa_1 \) for some \(i_3, i_4 \in I \). Let \(e = (sa)' + sa \) and \(e_1 = (sa_1)' + sa_1 \). Thus, \(s(i_1 + a) + e = i_3 + sa \) and \(s(i_2 + a_1) + e_1 = i_4 + sa_1 \). Since \(i_1 + a = i_2 + a_1 \), we have \(a_2 + e = i_3 + sa \) and \(a_2 + e_1 = i_4 + sa_1 \) for some \(a_2 = s(i_1 + a) \in \Gamma \). Therefore, \(a_2 + e + e_1 = i_5 + sa \) and \(a_2 + e + e_1 = i_6 + sa_1 \) for some \(i_5, i_6 \in I \). Thus, \(i_5 + sa = i_6 + sa_1 \). Hence \([sa] = [sa_1] \). Thus, \(\Gamma / \rho \) is an \(S \)-semigroup.

Next we define \(\Psi : \Gamma \to \Gamma / \rho \) as \(\Psi(\gamma) = [\gamma] \), \(\gamma \in \Gamma \). Clearly \(\Psi \) is an \(S \)-homomorphism. Let \(K \) be the kernel. Take \(k \in K \). Then \(\Psi(k) = [0] \) implies \([k] = [0] \) implies \(k \rho 0 \). Hence \(i_1 + k = i_2 + 0 \) for some \(i_1, i_2 \in I \). It follows that \(i_1 + k = i_2 \). Then \(i_1' + i_1 + k = i_1' + i_2 \). Let \(i_1' + i_2 = i_3 \). Hence \(i_1' + i_1 + k = i_3 \) implies \(i_1' + i_1 + k \in I \). Since \(i_1' + i_1 \in E^+(\Gamma) \), we have \(k \in I \). Therefore, \(K \subseteq I \). Clearly \(I \subseteq K \). Hence \(K = I \). Therefore, \(I \) is the kernel of an \(S \)-homomorphism. \(\square \)

4. Generalized linear sequential machine

Definition 4.1. A semiautomaton is a triple \(S = (Q, A, F) \), where \(Q \) is a state set, \(A \) is an input set and \(F : Q \times A \to Q \) is a state-transition function. If \(Q \) is an inverse semigroup (we always write it additively), we call \(S \) an inverse semigroup-semiautomaton and abbreviate this by ISA.

For \(q \in Q \) and \(a \in A \) we interpret \(F(q, a) \) as the new state obtained from the old state \(q \) by means of the input \(a \). We extend \(A \) to the free monoid \(A^* \) over \(A \) consisting of all finite sequences of elements of \(A \), including the empty sequence \(\Lambda \).
We define the function $f_a : Q \longrightarrow Q$ by
\[
\begin{align*}
 f_a(q) &= q, \\
 f_a(q) &= F(q, a) \text{ for all } a \in A, \\
 f_{xa}(q) &= F(f_x(q), a) \text{ for all } x \in A^*, a \in A.
\end{align*}
\]
Note that $f_{a_1a_2} = f_a f_{a_1}, a_1, a_2 \in A^*$.

Now we discuss two special cases.

The homomorphism case: Let Q and A be additive inverse semigroups with 0 and $F : Q \times A \longrightarrow Q$ be a homomorphism. Now $f_a(q) = F(q, a) = F((q, 0) + (0_Q, a)) = F(q, 0) + F(0_Q, a) = f_0(q) + f_a(0_Q)$. Hence $f_a = f_0 + \overline{f}_a$, where f_0 is a homomorphism (i.e., a distributive element in $M(Q)$), \overline{f}_a is the map with constant value $f_a(0_Q)$. Then S is called a homomorphic ISA.

Proposition 4.1. For $x = a_1a_2...a_n \in A^*$,
\[
f_x = f_0^n + (f_0^{n-1}\overline{f}_a + f_0^{n-2}\overline{f}_a + ... + f_0\overline{f}_{a_{n-1}} + \overline{f}_{a_n}),
\]
where $\overline{f}_a : Q \longrightarrow Q$ is the constant map with $\overline{f}_a(q) = f_a(0_Q)$ for all $q \in Q$.

Proof. We prove this result by induction on the length of the string x.

Let $a \in A$ and $q \in Q$. Now $f_a(q) = F(q, a) = F(q, 0) + F(0_Q, a) = f_0(q) + f_a(0_Q)$. Then $f_a = f_0 + \overline{f}_a$, so that the result is true for $n = 1$. Assume that the result is true for $n = k - 1$, i.e., $f_{a_1a_2...a_{k-1}} = f_0^{k-1} + (f_0^{k-2}\overline{f}_{a_1} + f_0^{k-3}\overline{f}_{a_2} + ... + f_0\overline{f}_{a_{k-2}} + \overline{f}_{a_{k-1}})$.

Now
\[
f_{a_1a_2...a_k} = f_a f_{a_1a_2...a_{k-1}} = (f_0 + \overline{f}_a)f_{a_1a_2...a_{k-1}} = f_0 f_{a_1a_2...a_{k-1}} + \overline{f}_a f_{a_1a_2...a_{k-1}}
\]
\[
= f_0(f_0^{k-1} + (f_0^{k-2}\overline{f}_{a_1} + f_0^{k-3}\overline{f}_{a_2} + ... + f_0\overline{f}_{a_{k-2}} + \overline{f}_{a_{k-1}})) + \overline{f}_a
\]
\[
= f_0^k + f_0^{k-1}\overline{f}_{a_1} + f_0^{k-2}\overline{f}_{a_2} + ... + f_0\overline{f}_{a_{k-1}} + \overline{f}_{a_k}.
\]
Hence the result by induction. \(\Box\)

The linear case: The linear case is a special case of the homomorphism case in which Q and A are R-semimodules for some semiring R and F is R-homomorphism.

Let $M = \{f_x | x \in A^*\}$. Clearly M is a submonoid of $M_{aff}(Q)$. Note that $M_d = \{f_0^n | n \geq 1\}$ is the endomorphism part of M.

Definition 4.2. Let $S = (Q, A, F)$ be a ISA. The subnear-semiring $N(S)$ of $M_{aff}(Q)$ generated by M is called the syntactic near-semiring of S.
Theorem 4.1. Every non-zero element of \(N(S) \) can be written as \(\sum_{i=1}^{n} f_{x_i} \) for \(f_{x_i} \in M \).

Proof. Let \(f = \sum_{i=1}^{n} f_{x_i} \) and \(g = \sum_{j=1}^{m} f_{y_j} \) where \(f_{x_i}, f_{y_j} \in M \). Clearly \(N(S) \) is closed with respect to addition. Now

\[
fg = \left(\sum_{i=1}^{n} f_{x_i} \right) \left(\sum_{j=1}^{m} f_{y_j} \right) = \left(\sum_{i=1}^{n} (f_{x_i} + f_{y_i}) \right)
\]

\[
= \sum_{i=1}^{n} (f_{y_i} + f_{x_i}) + \sum_{j=1}^{m} f_{y_j}
\]

\[
= \sum_{i=1}^{n} (f_{x_i} + f_{y_i}) + \sum_{j=1}^{m} f_{y_j}
\]

\[
= \sum_{i=1}^{n} \left(f_{x_i} + f_{y_j} \right) = \sum_{i=1}^{n} f_{x_i} + \sum_{j=1}^{m} f_{y_j}.
\]

Since the above expression is a finite sum of elements of \(M, N(S) \) is closed with respect to multiplication. Hence the result. □

We extend \(A \) to the free near-semiring \(A^\# \) over \(A \). If \(a^\# = w(a_1, \ldots, a_n) \) is a word in \(A^\# \) we define \(f_w(a_1, \ldots, a_n) = f_{a_1} \cdots f_{a_n} \) and \(F^\#(q, a^\#) = f_{a^\#}(q) \). Thus, we get an extended simultaneous sequential ISA \(S^\# = (Q, A^\#, F^\#) \).

Definition 4.3. Let \(S = (Q, A, F) \) be an ISA and \(A^\# \) the free near-semiring on \(A \). \(q_1 \in Q \) is accessible from \(q_2 \in Q \) if there is some \(\alpha \in A^\# \) with \(f_{\alpha}(q_2) = q_1 \). \(S \) is accessible if each state \(q \) is accessible from each other state.

\(N(S) \) is not only a near-semiring, but it also operates on \(Q \).

Lemma 4.1. \(Q \) is an \(N(S) \)-inverse semigroup.

Proof. Define a map \(N(S) \times Q \rightarrow Q \) as for any \(n = \sum_{i=1}^{n} x_i, x_i \in M, q \in Q, (n, q) \mapsto nq \) which satisfies the following conditions:

\[
(1) \left(\sum_{i=1}^{n} x_i + \sum_{j=1}^{n} y_j \right) q = \sum_{i=1}^{n} x_i(q) + \sum_{j=1}^{n} y_j(q), x_i, y_j \in M.
\]

\[
(2) \left(\sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j \right) q = \sum_{i=1}^{n} x_i(\sum_{j=1}^{n} y_j(q)), x_i, y_j \in M.
\]

\[
(3) 0q = 0_q.
\]

□
Proposition 4.2. Let S be an ISA. S is accessible if and only if Q is an $S = N(S)$-inverse semigroup with $S0_Q = Q$.

Proof. Assume that S is accessible. Then Q is an $N(S)$-inverse semigroup with $S0_Q = Q$. Conversely, suppose that $S0_Q = Q$. Let $q_1, q_2 \in Q$. Since $S0_Q = Q$, there exists $s \in S$ such that $s0_Q = q_1$. Now $s(0q_2) = q_1$. Then $(s0)q_2 = q_1$. Let $s0 = s_1 \in S$. Hence $s_1q_2 = q_1$. Therefore, S is accessible. □

Definition 4.4. An automaton is a quintuple $A = (Q, A, B, F, G)$, where (Q, A, F) is a semiautomaton, B is an output set and $G : Q \times A \rightarrow B$ is an output function of A. If Q is an inverse semigroup, A is called an inverse semigroup-automaton and is denoted as IA.

A is called a homomorphic IA if Q, A, B are inverse semigroups and F, G are homomorphisms. A is called a linear IA or linear automaton or linear sequential machine if Q, A, B are R-semimodules for some semiring R and F, G are R-homomorphisms.

Since for every automaton $A = (Q, A, B, F, G)$, $S = (Q, A, F)$ is a semiautomaton with the same attributes, we define $N(A)$ as $N(S)$.

5. IDEAL THEORY APPLIED TO MACHINES

Let A^* and B^* denote the free monoids over A and B respectively. For $q \in Q$, let $s_q : A^* \rightarrow B^*$ be defined by $s_q(\lambda) = \lambda$, $s_q(a) = G(q, a)$, $s_q(a_1a_2) = s_q(a_1)s_F(q, a_1)(a_2)$ and proceed inductively with $s_q(a_1a_2 \ldots a_n) = s_q(a_1a_2 \ldots a_{n-1})G(F(q, a_1 \ldots a_{n-1}), a_n)$.

Definition 5.1. $s_q : A^* \rightarrow B^*$ is called the sequential (input-output-) function of A at q.

Define the relation \sim on Q by $q_1 \sim q_2$ if $s_{q_1} = s_{q_2}$ for all $q_1, q_2 \in Q$.

Proposition 5.1. Let A be a linear IA. Then \sim is a congruence relation in the $N(A)$-inverse semigroup Q.

Proof. Clearly \sim is reflexive and symmetric. Assume that $q_1 \sim q_2$ and $q_2 \sim q_3$. Thus, $s_{q_1} = s_{q_2}$ and $s_{q_2} = s_{q_3}$, $q_1, q_2, q_3 \in Q$. Now $s_{q_1}(\lambda) = \lambda = s_{q_3}(\lambda)$, $s_{q_1}(a) = s_{q_3}(a)$ for all $a \in A$, $s_{q_1}(a_1a_2) = s_{q_1}(a_1)G(F(q_1, a_1), a_2) = s_{q_3}(a_1)G(F(q_3, a_1), a_2) = s_{q_3}(a_1a_2)$
for all \(a_1, a_2 \in A \), and so on.

Hence \(s_{q_1} = s_{q_2} \). Therefore, \(q_1 \sim q_3 \). Thus, \(\sim \) is transitive.

If \(q_1 \sim q_2 \) then \(s_{q_1} = s_{q_2} \). Let \(q \in Q \). Then \(s_{q_1 + q}(\wedge) = \wedge = s_{q_2 + q}(\wedge) \).

Let \(a \in A \). Now

\[
q_{q_1 + q}(a) = G(q_1 + q, a) = G(q_1, a) + G(q, a') + G(0, q, a)
\]

\[
= G(q_2, a) + G(q, a') + G(0, q, a) = G(q_2 + q, a) = s_{q_2 + q}(a).
\]

Let \(a_1, a_2 \in A \). Now

\[
s_{q_1 + q}(a_1 a_2) = s_{q_1 + q}(a_1)G(F(q_1 + q, a_1, a_2)
\]

\[
= s_{q_1 + q}(a_1)G((F(q_1, a_1), a_2) + (F(q, a'_1), a'_2) + (F(0, q, a_1), a_2))
\]

\[
= s_{q_2 + q}(a_1)(F(q_2, a_1, a_2) + (F(q, a'_1), a'_2) + (F(0, q, a_1), a_2))
\]

\[
= s_{q_2 + q}(a_1)G(F(q_2 + q, a_1), a_2 = s_{q_2 + q}(a_1 a_2),
\]

and so on. Hence \(s_{q_1 + q} = s_{q_2 + q} \). Thus, \(q_1 + q \sim q_2 + q \).

Let \(a \in A \) and \(n = f_{a_1 a_2 \ldots a_k} \in N(A) \). Suppose that \(q_1 \sim q_2 \). Now,

\[
s_{nq_1}(a) = G(nq_1, a) = G(f_{a_1 a_2 \ldots a_k}(q_1), a)
\]

\[
= G(F(q_1, a_1 a_2 \ldots a_k), a) = G(F(q_2, a_1 a_2 \ldots a_k), a)
\]

\[
= G(f_{a_1 a_2 \ldots a_k}(q_2), a) = s_{nq_2}(a).
\]

Assume that \(s_{nq_1}(a_1 a_2 \ldots a_{n-1}) = s_{nq_2}(a_1 a_2 \ldots a_{n-1}) \). Now,

\[
s_{nq_1}(a_1 a_2 \ldots a_n) = s_{nq_1}(a_1 a_2 \ldots a_{n-1})G(F(nq_1, a_1 a_2 \ldots a_{n-1}, a_n)
\]

\[
= s_{nq_2}(a_1 a_2 \ldots a_{n-1})G(F(f_{a_1 a_2 \ldots a_k}(q_1), a_1 a_2 \ldots a_{n-1}, a_n)
\]

\[
= s_{nq_2}(a_1 a_2 \ldots a_{n-1})G(F(F(q_1, a_1 a_2 \ldots a_k), a_1 a_2 \ldots a_{n-1}, a_n)
\]

\[
= s_{nq_2}(a_1 a_2 \ldots a_{n-1})G(F(F(q_2, a_1 a_2 \ldots a_k), a_1 a_2 \ldots a_{n-1}, a_n)
\]

\[
= s_{nq_2}(a_1 a_2 \ldots a_{n-1})G(F(F(nq_2, a_1 a_2 \ldots a_{n-1}, a_n)
\]

\[
= s_{nq_2}(a_1 a_2 \ldots a_n).
\]

By induction, \(s_{nq_1} = s_{nq_2} \). Hence \(nq_1 \sim nq_2 \).

Let \(Q_0 = \{ q \in Q | q \sim 0 \} \). Hereafter we assume that \(e + q = q + e \) for all \(e \in E^+(Q) \), \(q \in Q \) and \(E^+(Q) \subseteq Q_0 \). If \(Q \) is a group, the above conditions are trivially satisfied.

Theorem 5.1. If \(A \) is a linear IA then:

1. \(Q_0 = \{ q \in Q | q \sim 0 \} \trianglelefteq N(A) \) \(Q \);
2. \(G(q, 0) = 0_B \) for all \(q \in Q_0 \).

Proof.

1. Let \(q_1, q_2 \in Q_0 \). Then \(q_1 \sim 0 \) and \(q_2 \sim 0 \). Since \(q_2 \sim 0 \), we have \(q'_1 + q_2 \sim q'_2 \). Thus, \(q'_2 \sim q'_2 + q_2 \in E^+(Q) \subseteq Q_0 \) implies \(q'_2 \sim 0 \). Hence \(q_1 + q'_2 \sim 0 \). Let \(q \in Q \) and
Let \(\mathcal{A} = (Q, A, B, F, G) \) be a linear IA and \(g_0 : Q \to B, q \mapsto g_0(q) = G(q, 0) \). If \((g_0 f^k_0)(q) = (g_0 f^k)(q_1) \) for all \(k \geq 0 \) then \(q \sim q_1 \).

Proof. We prove this result by induction on the length of the string \(a \in A^* \). If \(k = 0 \) then \(G(q, 0) = G(q_1, 0) \) for all \(q, q_1 \in Q \). Let \(a \in A \).

Now, \(s_q(a) = G(q, a) = G(q, 0) + G(0Q, a) = G(q_1, 0) + G(0Q, a) = G(q_1, a) = s_{q_1}(a) \). Assume the result is true for \(k-1 \), i.e. \(s_q(a_1a_2\ldots a_{k-1}) = s_{q_1}(a_1a_2\ldots a_{k-1}) \).

Then
\[
G(f_{a_1a_2\ldots a_{k-1}}(q), a_k) = G\left((f_0^{k-1} + (f_0^{k-2} f_1 + \cdots + f_{a_{k-1}}))(q), a_k\right)
\]

\[
= G(f_0^{k-1}(q), 0) + G\left((f_0^{k-2} f_1 + \cdots + f_{a_k})(q), 0\right) + G(0Q, a_k)
\]

\[
= G(f_0^{k-1}(q_1), 0) + G(f_0^{k-2} f_1 + \cdots + f_{a_{k-1}}(q_1), 0) + G(0Q, a_k)
\]

\[
= G(f_{a_1a_2\ldots a_{k-1}}(q_1), a_k).
\]

Now,
\[
s_q(a_1a_2\ldots a_k) = s_q(a_1a_2\ldots a_{k-1})G(F(q, a_1a_2\ldots a_k), a_k)
\]

\[
= s_{q_1}(a_1a_2\ldots a_{k-1})G(f_{a_1a_2\ldots a_{k-1}}(q), a_k)
\]

\[
= s_{q_1}(a_1a_2\ldots a_{k-1})G(f_{a_1a_2\ldots a_{k-1}}(q_1), a_k)
\]

\[
= s_{q_1}(a_1a_2\ldots a_k).
\]

Hence \(q \sim q_1 \). \(\square \)

Definition 5.2. An IA \(\mathcal{A} = (Q, A, B, F, G) \) is reduced if \(\sim \) is the equality. If \(\mathcal{A} \) is accessible (i.e. if \((Q, A, F) \) is accessible) and reduced then \(\mathcal{A} \) is called minimal.

Theorem 5.3. Let \(\mathcal{A} \) be a linear IA. Then \(\mathcal{A} \) is reduced if and only if \(N(\mathcal{A})Q \) has no non-zero ideals \(P \) with \(g_0P = \{0_B\} \).

Proof. Assume that \(N(\mathcal{A})Q \) has no such ideals. By Theorem 5.1, \(Q_0 \) is an ideal of \(N(\mathcal{A})Q \) with \(g_0Q_0 = \{0_B\} \). Then \(Q_0 = \{0\} \). Hence \(\mathcal{A} \) is reduced.

Conversely suppose that \(\mathcal{A} \) is reduced and that \(P \subseteq N(\mathcal{A}) \) has \(g_0P = \{0_B\} \). Then \(G(p, 0) = g_0(p) = 0_B \) for all \(p \in P \). Since \(f_0^k(p + 0) = (f_0^k(0))^\prime \in P \) for all
$p \in P$, we have $f_k^0(p) \in P$. Then $(g_0 f_k^0)(p) = 0_B$ for all $p \in P, k \geq 0$. Therefore,
$(g_0 f_k^0)(p) = 0_B = (g_0 f_0^0)(0_Q)$ for all $k \geq 0$. Thus, $p \sim 0_Q$ by Theorem 5.2. Hence
$p = 0_Q$. Then $P = \{0_Q\}$. □

From Proposition 4.2 and Theorem 5.3 we get

Theorem 5.4. Let A be a linear IA. Then A is minimal if and only if $N(A)Q$ is zero
generated and does not contain non-zero ideals which are annihilated by g_0.

Thus, in an Automata, if Q is not necessarily group but inverse semigroup, we
have extended the result obtained for group Automata to check the minimality.

References

Department of Mathematics
Holy Cross College (Autonomous)
Nagercoil - 629 004, India
Email address: jenilac201@gmail.com

Department of Mathematics
Annamalai University
Annampalainagar - 608 002, India
Email address: dheenap@yahoo.com