THE HYPER-ZAGREB INDEX OF SOME COMPLEMENT GRAPHS

MOHAMMED SAAD ALSHARAFI, MAHIOUB MOHAMMED SHUBATAH, AND ABDU QAID ALAMERI

ABSTRACT. In this study, the Hyper-Zagreb index for some complement graphs operations has been computed, that have been applied to compute the Hyper-Zagreb index for complement molecular graph of a nanotorus and titania nanotubes.

1. INTRODUCTION

Mathematical chemistry is a branch of theoretical chemistry in which we use mathematical methods to analyze and predict the chemical structure. Chemical graph theory is a branch of mathematical chemistry where we use tools from graph theory to mathematically model the chemical phenomenon. This theory plays an important role in Function in the Chemical Sciences [9]. Throughout this paper, we consider a finite connected graph \(G \) that has no loops or multiple edges with vertex and edge sets \(V(G) \), and \(E(G) \), respectively. For a graph \(G \), the degree of a vertex \(u \) is the number of edges incident to \(u \), denoted by \(\delta_G(u) \). The complement of \(G \), denoted by \(\overline{G} \), is a simple graph on the same set of vertices \(V(G) \) in which two vertices \(u \) and \(v \) are adjacent, i.e., connected by an edge \(uv \), if and only if they are not adjacent in \(G \). Hence, \(uv \in E(\overline{G}) \), if and only if \(uv \notin E(G) \). Obviously \(E(G) \cup E(\overline{G}) = E(K_n) \), and \(m = |E(\overline{G})| =

\(^1\)corresponding author

2010 Mathematics Subject Classification. 05C09.

Key words and phrases. Zagreb index, Hyper-Zagreb index, complement graph, graph operation.
\(\binom{n}{2} - m \), the degree of a vertex \(u \) in \(G \), is the number of edges incident to \(u \), denoted by \(\delta_G(u) = n - 1 - \delta_G(v) \) [11]. The first and second Zagreb indices have been introduced by Gutman and Trinajstic in 1972 [10]. They are respectively defined as:
\[
M_1(G) = \sum_{v \in V(G)} \delta_G^2(v) = \sum_{uv \in E(G)} [\delta_G(u) + \delta_G(v)], \quad M_2(G) = \sum_{uv \in E(G)} \delta_G(u) \delta_G(v),
\]

In 2013, G.H. Shirdel, H. Rezapour and A.M. Sayadi [5] introduced distance-based Zagreb indices named Hyper-Zagreb index which is defined as:
\[
HM(G) = \sum_{uv \in E(G)} (\delta_G(u) + \delta_G(v))^2.
\]

Furtula and Gutman in 2015 introduced forgotten index (F-index) [4] which defined as:
\[
F(G) = \sum_{uv \in E(G)} (\delta_G^2(u) + \delta_G^2(v)).
\]

In 2020, computed exact formulas for the Y-index of some graph operations by A. Alameri et al [1]. They defined a new distance-based of forgotten indices named Yemen-index (Y-index) defined as:
\[
Y(G) = \sum_{u \in V(G)} \delta_G^4(u) = \sum_{uv \in E(G)} [\delta_G^3(u) + \delta_G^3(v)].
\]

2. Preliminaries

In this section we give some basic and preliminary concepts which we shall use later.

Lemma 2.1. [2] Let \(G_1 \) and \(G_2 \) be two connected graphs with \(|V(G_1)| = n_1, |V(G_2)| = n_2, |E(G_1)| = m_1, \) and \(|E(G_2)| = m_2. \) Then
\[
(1) \quad |V(G_1 \times G_2)| = |V(G_1 \lor G_2)| = |V(G_1 \circ G_2)| = |V(G_1 \otimes G_2)| = |V(G_1 * G_2)| = |V(G_1 \oplus G_2)| = |V(G_1 + G_2)| = n_1n_2,
\]
\[
(2) \quad |E(G_1 \times G_2)| = m_1n_2 + n_1m_2, \quad |E(G_1 \lor G_2)| = m_1n_2 + n_1m_2 + 2m_1m_2, \quad |E(G_1 \circ G_2)| = m_1n_2 + n_1m_2 + 2m_1m_2, \quad |E(G_1 \otimes G_2)| = m_1n_2^2 + m_2n_1, \quad |E(G_1 \oplus G_2)| = m_1n_2^2 + m_2n_1^2 - 2m_1m_2, \quad |E(G_1 + G_2)| = 2m_1m_2, \quad |E(G_1 \times G_2)| = m_1n_2 + m_2n_1^2 - 4m_1m_2.
\]
Corollary 2.1. [10] The first Zagreb index of some well-known graphs: For path graph P_n and cycle graph C_n, with $n : n \geq 3$ vertices:

$$M_1(C_n) = 4n, \quad M_1(P_n) = 4n - 6.$$

Corollary 2.2. [3, 5] The Hyper-Zagreb index of some well-known graphs: For path P_n and cycle graphs C_n, with $n, m \geq 3$ vertices:

$$HM(C_n) = 16n, \quad HM(P_n) = 16n - 30, \quad M(P_n \times C_m) = 128nm - 150m.$$

Theorem 2.1. [6] Let G be a simple graph on n vertices and m edges. Then:

$$M_1(G) = n(n-1)^2 - 4m(n-1) + M_1(G),$$

$$HM(G) = 2n(n-1)^3 - 12m(n-1)^2 + 4m^2 + (5n - 6)M_1(G) - HM(G).$$

3. MAIN RESULTS

In this section, we study the Hyper-Zagreb index of various complement graph binary operations such as Cartesian product $G_1 \times G_2$, composition $G_1 \circ G_2$, disjunction $G_1 \lor G_2$, symmetric difference $G_1 \oplus G_2$, join $G_1 + G_2$, tensor product $G_1 \otimes G_2$, and strong product $G_1 \ast G_2$, of graphs. We use the notation $V(G_i)$ for the vertex set, $E(G_i)$ for the edge set, n_i for the number of vertices and m_i, \overline{m}_i for the number of edges of the graph G_i, \overline{G}_i respectively. All graphs here offer are simple graphs.

Proposition 3.1. The Hyper-Zagreb index of the complement of $(G_1 \otimes G_2)$ is given by:

$$HM(\overline{G}_1 \otimes \overline{G}_2)$$

$$= 2n_1n_2(n_1n_2 - 1)^3 - 24m_1m_2(n_1n_2 - 1)^2 + 16m_1^2m_2^2 + (5n_1n_2 - 6)M_1(G_1)M_1(G_2) - F(G_1)F(G_2) + 2M_2(G_1)M_2(G_2).$$

Proof. By using Theorem 2.1 we have:

$$HM(\overline{G}_1 \otimes \overline{G}_2)$$

$$= 2|V(G_1 \otimes G_2)||V(G_1 \otimes G_2)| - 1)^3 - 12|E(G_1 \otimes G_2)||V(G_1 \otimes G_2)| - 1)^2$$

$$+ 4|E(G_1 \otimes G_2)|^2 + (5|V(G_1 \otimes G_2)| - 6)M_1(G_1 \otimes G_2) - HM(G_1 \otimes G_2).$$
By Lemma 2.1 \(|E(G_1 \otimes G_2)| = 2m_1m_2, \quad |V(G_1 \otimes G_2)| = n_1n_2,\) and by [7] and [8], respectively, we have

\[M_1(G_1 \otimes G_2) = M_1(G_1)M_1(G_2), \quad HM(G_1 \otimes G_2) = F(G_1)F(G_2) + 2M_2(G_1)M_2(G_2),\]

which is complete the proof. \qed

Proposition 3.2. The Hyper-Zagreb index of the complement of \((G_1 + G_2)\) is given by:

\[
HM(G_1 + G_2) = 2n_1n_2(n_1n_2 - 1)^3 - 12(m_1 + m_2 + n_1n_2)(n_1n_2 - 1)^2 + 4(m_1 + m_2 + n_1n_2)^2
\]
\[+ (5n_1n_2 - 6)[M_1(G_1) + M_1(G_2) + n_1n_2^2 + n_2n_1^2 + 4m_1n_2 + 4m_2n_1]
\[- [HM(G_1) + HM(G_2) + 5(n_1M_1(G_2) + n_2M_1(G_1))
\[+ 8[n_1^2m_2 + n_2^2m_1 + m_1m_2] + n_1n_2[(n_2 + n_1)^2 + 4(m_1 + m_2)]].
\]

Proof. By using Theorem 2.1 we have

\[
HM(G_1 + G_2) = 2|V(G_1 + G_2)||(|V(G_1 + G_2)| - 1)^3 - 12|E(G_1 + G_2)||(|V(G_1 + G_2)| - 1)^2
\[+ 4|E(G_1 + G_2)|^2 + (5|V(G_1 + G_2)| - 6)M_1(G_1 + G_2) - HM(G_1 + G_2),
\]

By Lemma 2.1 \(|E(G_1 + G_2)| = m_1 + m_2 + n_1n_2, \quad |V(G_1 + G_2)| = n_1n_2,\) and by [7] and [5], respectively, we have

\[M_1(G_1 + G_2) = M_1(G_1) + M_1(G_2) + n_1n_2^2 + n_2n_1^2 + 4m_1n_2 + 4m_2n_1,
\]

\[
HM(G_1 + G_2) =
\]
\[HM(G_1) + HM(G_2) + 5(n_1M_1(G_2) + n_2M_1(G_1))
\[+ 8[n_1^2m_2 + n_2^2m_1 + m_1m_2] + n_1n_2[(n_2 + n_1)^2 + 4(m_1 + m_2)],
\]

which is complete the proof. \qed

Proposition 3.3. Let \(G_1, G_2\) be two simple connected graphs with \(n_1, n_2\) vertices and \(m_1, m_2\) edges, respectively. Then,

\[M_1(G_1 \ast G_2) = (n_2 + 6m_2)M_1(G_1) + 8m_2m_1 + (6m_1 + n_1)M_1(G_2) + 2M_1(G_1)M_1(G_2).
\]
Proposition 3.4. The Hyper-Zagreb index of the complement of \((G_1 \ast G_2)\) is given by:

\[
HM(G_1 \ast G_2) = 2n_1n_2(n_1n_2 - 1)^3 - 12(m_1n_2 + n_1m_2 + 2m_1m_2)(n_1n_2 - 1)^2 + 4(m_1n_2 + n_1m_2 + 2m_1m_2)^2 + (5n_1n_2 - 6)[(n_2 + 6m_2)M_1(G_1) + 8m_2m_1 + (6m_1 + n_1)M_1(G_2) + 2M_1(G_1)M_1(G_2) - HM(G_1) + n_1HM(G_2) + 5n_2M_1(G_1) + 5n_1M_1(G_2) + 4n_2m_1[2n_2 + 1] + 8m_2[n_1 + m_1] + n_1n_2(n_3^2 + 2n_2 + 4m_2)]
\]

Proof. By using Theorem 2.1 we have

\[
HM(G_1 \ast G_2) = 2|V(G_1 \ast G_2)|(|V(G_1 \ast G_2)| - 1)^3 - 12|E(G_1 \ast G_2)|(|V(G_1 \ast G_2)| - 1)^2 + 4|E(G_1 \ast G_2)|^2 + (5|V(G_1 \ast G_2)| - 6)M_1(G_1)M_1(G_2) - HM(G_1 \ast G_2).
\]

By Lemma 2.1 \(|E(G_1 \ast G_2)| = m_1n_2 + n_1m_2 + 2m_1m_2\), \(|V(G_1 \ast G_2)| = n_1n_2\), and by Proposition 3.3 and [5], respectively, we have

\[
M_1(G_1G_2) = (n_2 + 6m_2)M_1(G_1) + 8m_2m_1 + (6m_1 + n_1)M_1(G_2) + 2M_1(G_1)M_1(G_2),
\]

\[
HM(G_1 \ast G_2) = HM(G_1) + n_1HM(G_2) + 5n_2M_1(G_1) + 5n_1M_1(G_2) + 4n_2m_1[2n_2 + 1] + 8m_2[n_1 + m_1] + n_1n_2(n_3^2 + 2n_2 + 4m_2),
\]

which is complete the proof. \(\square\)

Proposition 3.5. The Hyper-Zagreb index of the complement of \((G_1 \times G_2)\) is given by:

\[
HM(G_1 \times G_2) = 2n_1n_2(n_1n_2 - 1)^3 - 12(m_1n_2 + m_2n_1)(n_1n_2 - 1)^2 + 4(m_1n_2 + m_2n_1)^2 + (5n_1n_2 - 6)[n_2M_1(G_1) + n_1M_1(G_2) + 8m_2m_1] - n_2HM(G_1) + n_1HM(G_2) + 12m_1M_1(G_2) + 12m_2M_1(G_1)].
\]
Proof. By using Theorem 2.1 we have

\[
\text{HM}(G_1 \times G_2) \\
= 2|V(G_1 \times G_2)|(|V(G_1 \times G_2)| - 1)^3 - 12|E(G_1 \times G_2)||V(G_1 \times G_2)| - 1)^2 \\
+ 4|E(G_1 \times G_2)|^2 + (5|V(G_1 \times G_2)| - 6)M_1(G_1 \times G_2) - \text{HM}(G_1 \times G_2).
\]

By Lemma 2.1 \(|E(G_1 \times G_2)| = m_1 n_2 + n_1 m_2, \quad |V(G_1 \times G_2)| = n_1 n_2, and by [7] and [3] respectively, we have

\[
M_1(G_1 \times G_2) = n_2 M_1(G_1) + n_1 M_1(G_2) + 8m_1 m_2,
\]

\[
\text{HM}(G_1 \times G_2) = n_2 \text{HM}(G_1) + n_1 \text{HM}(G_2) + 12m_1 M_1(G_2) + 12m_2 M_1(G_1),
\]

which is complete the proof. \(\square\)

Proposition 3.6. The Hyper-Zagreb index of the complement of \((G_1 \circ G_2)\) is given by:

\[
\text{HM}(\overline{G_1 \circ G_2}) \\
= 2n_1 n_2(n_1 n_2 - 1)^3 - 12[m_1 n_2^2 + m_2 n_1](n_1 n_2 - 1)^2 + 4[m_1 n_2^2 + m_2 n_1]^2 \\
+ (5n_1 n_2 - 6)[n_2^3 M_1(G_1) + n_1 M_1(G_2) + 8n_2 m_2 m_1] - [n_2^4 \text{HM}(G_1) \\
+ n_1 \text{HM}(G_2) + 12n_2^2 m_2 M_1(G_1) + 10n_2 m_1 M_1(G_2) + 8m_2 m_1].
\]

Proof. By using Theorem 2.1 we have

\[
\text{HM}(\overline{G_1 \circ G_2}) \\
= 2|V(G_1 \circ G_2)|(|V(G_1 \circ G_2)| - 1)^3 - 12|E(G_1 \circ G_2)||V(G_1 \circ G_2)| - 1)^2 \\
+ 4|E(G_1 \circ G_2)|^2 + (5|V(G_1 \circ G_2)| - 6)M_1(G_1 \circ G_2) - \text{HM}(G_1 \circ G_2),
\]

By Lemma 2.1 \(|E(G_1 \circ G_2)| = m_1 n_2^2 + m_2 n_1, \quad |V(G_1 \circ G_2)| = n_1 n_2, and by [10] and [3] respectively, we have

\[
M_1(G_1 \circ G_2) = n_2^3 M_1(G_1) + n_1 M_1(G_2) + 8n_2 m_2 m_1,
\]

\[
\text{HM}(G_1 \circ G_2) = n_2^4 \text{HM}(G_1) + n_1 \text{HM}(G_2) + 12n_2^2 m_2 M_1(G_1) + 10n_2 m_1 M_1(G_2) + 8m_2 m_1,
\]

which is complete the proof. \(\square\)
Proposition 3.7. The Hyper-Zagreb index of the complement of \((G_1 \vee G_2)\) is given by:

\[
HM(G_1 \vee G_2) = 2n_1n_2(n_1n_2 - 1)^3 - 12[n_1n_2^2 + m_2n_1^2 - 2m_1m_2](n_1n_2 - 1)^2 \\
+ 4[n_1n_2^2 + m_2n_1^2 - 2m_1m_2]^2 + (5n_1n_2 - 6)[(n_1n_2^2 - 4m_2n_2)M_1(G_1) \\
+ M_1(G_2)M_1(G_1) + (n_2n_1^2 - 4m_1n_1)M_1(G_2) + 8m_1m_2n_1n_2] \\
- [[n_1^2 - 2n_2^2m_2]HM(G_2) + [n_1^2 - 2n_2^2m_2]HM(G_1) + 5n_1M_1(G_1)F(G_2) \\
+ 5n_2M_1(G_2)F(G_1) + 10n_2^2m_2n_1M_1(G_1) + 10n_2n_1^2m_1M_1(G_2) \\
+ 8n_2^2m_2m_1 + 8n_1^2m_1m_2 - 8n_2m_1^2M_1(G_2) - 8n_1m_2^2M_1(G_1) \\
- 4n_1^2m_1F(G_2) - 4n_2^2m_2F(G_1) - 8n_1^2m_1M_2(G_2) - 8n_2^2m_2M_2(G_1) \\
+ 8n_1M_2(G_2) + 8n_2M_2(G_1) - 8n_2m_1M_1(G_1)M_1(G_2) + 4n_2M_2(G_1)M_1(G_2) \\
+ 4n_1M_2(G_2)M_1(G_1) - 2F(G_1)F(G_2) - 4M_2(G_2)M_2(G_2)].
\]

Proof. By using Theorem 2.1 we have

\[
HM(G_1 \vee G_2) = 2|V(G_1 \vee G_2)||\left|V(G_1 \vee G_2)\right| - 1)^3 - 12|E(G_1 \vee G_2)||\left|V(G_1 \vee G_2)\right| - 1)^2 \\
+ 4|E(G_1 \vee G_2)|^2 + (5|V(G_1 \vee G_2)| - 6)M_1(G_1 \vee G_2) - HM(G_1 \vee G_2),
\]

By Lemma 2.1 \(|E(G_1 \vee G_2)| = m_1n_2^2 + m_2n_1^2 - 2m_1m_2, \quad |V(G_1 \vee G_2)| = n_1n_2,\) and by [10] and [8] respectively, we have

\[
M_1(G_1 \vee G_2) = (n_1n_2^2 - 4m_2n_2)M_1(G_1) + M_1(G_2)M_1(G_1) \\
+ (n_2n_1^2 - 4m_1n_1)M_1(G_2) + 8m_1m_2n_1n_2.
\]

\[
HM(G_1 \vee G_2) = n_1^2 - 2n_2^2m_2]HM(G_2) + [n_1^2 - 2n_2^2m_2]HM(G_1) + 5n_1M_1(G_1)F(G_2) \\
+ 5n_2M_1(G_2)F(G_1) + 10n_2^2m_2n_1M_1(G_1) + 10n_2n_1^2m_1M_1(G_2) \\
+ 8n_2^2m_2m_1 + 8n_1^2m_1m_2 - 8n_2m_1^2M_1(G_2) - 8n_1m_2^2M_1(G_1) - 4n_1^2m_1F(G_2) \\
- 4n_2^2m_2F(G_1) - 8n_1^2m_1M_2(G_2) - 8n_2^2m_2M_2(G_1) + 8n_1M_2(G_2) + 8n_2M_2(G_1) - 8n_2m_1M_1(G_1)M_1(G_2) + 4n_2M_2(G_1)M_1(G_2) \\
+ 4n_1M_2(G_2)M_1(G_1) - 2F(G_1)F(G_2) - 4M_2(G_2)M_2(G_2)].
\]
by:

The hyper-Zagreb index of complement nanotube Figure 1 is given by

\[HM(G_1 \oplus G_2) = 2n_1n_2(n_1n_2 - 1)^3 - 12[m_1n_2^3 + m_2n_1^3 - 4m_1m_2(n_1n_2 - 1)^2
+4[m_1n_2^2 + m_2n_1^2 - 4m_1m_2]^2 + (5n_1n_2 - 6)(n_1n_2^3 - 8m_2n_2)M_1(G_1)
+4M_1(G_1)M_1(G_2) + (n_2m_1^2 - 8m_1n_1)M_1(G_2) + 8m_1m_2n_1n_2
-[(n_1^4 - 4n_2^3m_2)HM(G_2) + [n_2^4 - 4n_2^3m_2]HM(G_1) + 20n_1M_1(G_1)F(G_2)
+20n_2M_1(G_2)F(G_1) + 10n_2^2m_2n_1M_1(G_1) + 10n_2n_1^2m_1M_1(G_2)
+8n_2^3m_2m_1 - 16n_2^2m_1^2M_1(G_2) - 16n_1m_2^2M_1(G_1) - 8n_1m_1^2F(G_2)
-8n_2^3m_2F(G_1) - 16n_1m_2^2M_1(G_2) - 16n_2^2m_2M_1(G_2) + 32m_1M_2(G_2)
+32m_2M_2(G_1)M_1(G_2) + 16n_2M_2(G_1)M_1(G_2) + 16n_1M_2(G_2)M_1(G_1) - 16F(G_1)F(G_2) - 32M_1(G_1)M_2(G_2)].

Proof. By the similar method in Proposition 3.7.

4. Application

Corollary 4.1. The hyper-Zagreb index of complement nanotube Figure 1 is given by

\[HM(TiO_2[n, m]) = 12n(6mn + 6n - 1)^3[6m^2n + 12mn + 6n - 11m - 9]
+2680m^2n^2 + 4360mn^2 + 1696n^2 - 1036mn - 572n. \]
and since $M_1(\text{TiO}_2[n,m]) = 76mn + 48n$, given in [9]. $HM(\text{TiO}_2) = 580mn + 284n$, given in [12]. The partitions of the vertex set and edge set $V(\text{TiO}_2), E(\text{TiO}_2)$, of $\text{TiO}_2[n,m]$ nanotubes are given in Table 1. and Table 2., respectively. We have

$$HM(\overline{\text{TiO}_2[n,m]})$$
$$= 2\sum |V(\text{TiO}_2[n,m])|(|\sum |V(\text{TiO}_2[n,m])| - 1)^3$$
$$-12 \bigcup E(\text{TiO}_2[n,m])(|\sum |V(\text{TiO}_2[n,m])| - 1)^2 + 4 \bigcup E(\text{TiO}_2[n,m])^2$$
$$+(5\sum |V(\text{TiO}_2[n,m])| - 6)M_1(\text{TiO}_2[n,m]) - HM(\text{TiO}_2[n,m])$$
$$= 2(6mn + 6n)(6mn + 6n - 1)^3 - 12|E_{8}^*| + |E_{10}^* \cup E_{12}^*|$$
$$+|E_{15}^*|[6mn + 6n - 1]^2 + 4(|E_{8}^*| + |E_{10}^* \cup E_{12}^*| + |E_{15}^*|)^2$$
$$+(5(6mn + 6n)| - 6)(76mn + 48n) - 580mn - 284n$$
$$= 12n(6mn + 6n - 1)^2[6m^2n + 12mn + 6n - 11m - 9]$$
$$+2680m^2n^2 + 4360mn^2 + 1696n^2 - 1036mn - 572n.$$

Table 1. The vertex partition of $\text{TiO}_2[n,m]$ nanotubes.

<table>
<thead>
<tr>
<th>Vertex partition</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardinality</td>
<td>$2mn + 4n$</td>
<td>$2mn$</td>
<td>$2n$</td>
<td>$2mn$</td>
</tr>
</tbody>
</table>

Table 2. The edge partition of $\text{TiO}_2[n,m]$ nanotubes.

<table>
<thead>
<tr>
<th>Edge partition</th>
<th>$E_6 = E_8^*$</th>
<th>$E_7 = E_{10}^* \cup E_{12}^*$</th>
<th>$E_9 = E_{15}^*$</th>
<th>E_{12}^*</th>
<th>E_{10}^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardinality</td>
<td>$6n$</td>
<td>$4mn + 4n$</td>
<td>$6mn - 2n$</td>
<td>$4mn + 2n$</td>
<td>$2n$</td>
</tr>
</tbody>
</table>

Figure 1. The molecular graph of $\text{TiO}_2[n,m]$ nanotube.
Corollary 4.2. Let $T = T[p,q]$ be the molecular graph of a nanotorus such that $|V(T)| = pq$, $|E(T)| = \frac{3}{2}pq$, Fig. 2. Then:

Proof. To proof (a), by using Theorem 2.1 we have

$$HM(T[p,q]) = 2|V(T[p,q])|(|V(T[p,q]) - 1)^3 - 12|E(T[p,q])|(|V(T[p,q]) - 1)^2$$

$$+ 4|E(T[p,q])|^2 + (5|V(T[p,q]) - 6)M_1(T[p,q]) - HM(T[p,q])$$.

And since $HM(T[p,q]) = 54pq$ by [8]. $M_1(T) = 9pq$ by [10]. Then

$$HM(T[p,q]) = pq[(pq - 1)^2[2pq - 20] + 54pq - 108].$$

To proof (b), by [8]. $HM(P_n \times T) = 250npq - 186pq$, $M_1(T) = 9pq$. $M_1(P_n \times T) = pq(25n - 18)$, and by using Lemma 2.1 $|E(P_n \times T)| = (n-1)pq + \frac{3}{2}npq = pq(\frac{3}{2}n - 1)$, $|V(P_n \times T)| = npq$ and by using Theorem 2.1 we get

$$HM(P_n \times T)$$

$$= 2|V(P_n \times T)|(|V(P_n \times T) - 1)^3 - 12|E(P_n \times T)|(|V(P_n \times T) - 1)^2$$

$$+ 4|E(P_n \times T)|^2 + (5|V(P_n \times T) - 6)M_1(P_n \times T) - HM(P_n \times T)$$

Figure 2. Molecular graph of a nanotorus
5. Conclusion

The present study has investigated some of the basic mathematical properties of the Hyper-Zagreb index of complement graphs and obtained explicit formula for their values under several graph operations. and we have studied the Hyper-Zagreb index of molecular complement graph of nanotorus and titania nanotubes $TiO_2[n,m]$.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SHEBA REGION-YEMEN
E-mail address: alsharafi200010@gmail.com

DEPARTMENT OF STUDIES IN MATHEMATICS, UNIVERSITY OF AL-BAIDA-YEMEN
E-mail address: mahioub70@yahoo.com

DEPARTMENT OF BME, UNIVERSITY OF SCIENCE AND TECHNOLOGY-YEMEN
E-mail address: a.alameri2222@gmail.com