NANO I_g-NORMAL AND NANO I_g-REGULAR SPACES

R. PREMUKMAR1, M. RAMESHPANDI, AND S. ANTONY DAVID

Abstract. In this paper a new classes of nI_g-normal space and nI_g-regular space are introduced and various characterizations and properties are given. Further, we define a new notion is called nI_{rg}-closed set and establish their various characteristic properties are given.

1. Introduction

In 2013, Lellis Thivagar et al., [3] introduced a nano topological space. Then the notions of an ideal nano topological space was introduced by Parimala et al., [4, 6]. A nano topological space (U, N) with an ideal I on U is called [6] an ideal nano topological space and is denoted by (U, N, I). For background material, papers [1] to [10] may be perused. A subset H of a space (U, N) is called $(n\alpha$-open, nr-open and np-open [3]), nI-open [4], ng-closed [2], $n\alpha g$-closed [10], $nr g$-closed [9] and nI_g-closed [5]. The family of all $n\alpha$-closed (resp. N^α) and the family of all $n\star$-closed (resp. N^\star).

In this paper a new classes of nI_g-normal space and nI_g-regular space are introduced and various characterizations and properties are given. Further, we define a new notion is called nI_{rg}-closed set and establish their various characteristic properties are given.

1Corresponding author
2010 Mathematics Subject Classification. 54A05, 54A10, 54C08, 54C10.
Key words and phrases. nI_{rg}-closed set, nano I_g-normal, nano completely condense and nano I_g-regular spaces.
2. Preliminaries

In the rest of the paper, we denote a nano topological space by \((U, \mathcal{N})\), where \(\mathcal{N} = \tau_R(X)\). The nano-interior and nano-closure of a subset \(A\) of \(U\) are denoted by \(\text{nint}(A)\) and \(\text{ncl}(A)\) respectively. A nano topological space \((U, \mathcal{N})\) with an ideal \(I\) on \(U\) is called \([6]\) an ideal nano topological space and is denoted by \((U, \mathcal{N}, I)\) in future is referred as a space.

Definition 2.1. A subset \(H\) of a space \((U, \mathcal{N}, I)\) is called;

(i) nano \(\ast\)-closed (briefly \(n\ast\)-closed) \([5]\) if \(H^\ast \subseteq H\),
(ii) nano dense (briefly \(n\)-dense) \([7]\) if \(\text{ncl}(H) = U\).

Definition 2.2. \([1]\) A space \((U, \mathcal{N})\) is said to be almost nano regular (briefly, almost \(n\)-regular) if for each \(n\)-regular closed set \(H\) and a point \(a \in U - H\), there exist disjoint \(n\)-open sets \(M\) and \(N\) such that \(a \in M\) and \(H \subseteq N\).

Definition 2.3. \([8]\) A space \(U\) is called nano-\(T_1\) space (briefly \(nT_1\)-space) for \(x, y \in U\) and \(x \neq y\), there exists a nano-open sets \(G\) and \(H\) such that \(x \in G\), \(y \notin G\), and \(y \in H\), \(x \notin H\).

3. \(nI_g\)-NORMAL AND \(nI_g\)-REGULAR SPACES

Definition 3.1. An ideal nanotopological space \((U, \mathcal{N}, I)\) is said to be a nano \(I_g\)-normal space(briefly \(nI_g\)-normal space) if for every pair of disjoint \(n\)-closed sets \(A\) and \(B\), there exist disjoint \(nI_g\)-open sets \(U\) and \(V\) such that \(A \subseteq U\) and \(B \subseteq V\).

Definition 3.2. An ideal nano \(I\) is said to be nano completely codense if \(\text{PO}(U) \cap I = \{\phi\}\), where \(\text{PO}(U)\) is the family of all \(np\)-open set in \((U, \mathcal{N})\).

Theorem 3.1. Let \((U, \mathcal{N}, I)\) be an ideal nanotopological space. Then the following are equivalent.

(i) \(U\) is \(nI_g\)-normal.
(ii) For every pair of disjoint \(n\)-closed sets \(E\) and \(F\), there exist disjoint \(nI_g\)-open sets \(G\) and \(H\) such that \(E \subseteq F\) and \(F \subseteq H\).
(iii) For every \(n\)-closed set \(E\) and a \(n\)-open set \(H\) containing \(E\), there exists a \(nI_g\)-open set \(G\) such that \(E \subseteq G \subseteq \text{ncl}^\ast(G) \subseteq H\).
Proof. (i) ⇒ (ii) The proof follows from the definition of nI_g-normal spaces.

(ii) ⇒ (iii) Let E be a n-closed set and H be a n-open set containing E. Since E and $U - H$ are disjoint n-closed sets, there exist disjoint nI_g-open sets G and S such that $E \subseteq G$ and $U - H \subseteq S$. Again, $G \cap S = \phi$ implies that $G \cap \text{nint}^*(S) = \phi$ and so $\text{ncl}^*(G) \subseteq U - \text{nint}^*(S)$. Since $U - H$ is n-closed and $S \subseteq H$. Thus, we have $E \subseteq G \subseteq \text{ncl}^*(G) \subseteq U - \text{nint}^*(S) \subseteq H$ which proves (iii).

(iii) ⇒ (i) Let E and F be two disjoint n-closed subsets of U. By hypothesis, there exists a nI_g-open set G such that $E \subseteq G \subseteq \text{ncl}^*(G) \subseteq U - F$. If $S = U - \text{ncl}^*(G)$, then G and S are the required disjoint nI_g-open sets containing E and F respectively. So, (U, \mathcal{N}, I) is nI_g-normal.

Theorem 3.2. Let (U, \mathcal{N}, I) be an ideal nanotopological space, where I is nano completely codense. If (U, \mathcal{N}, I) is nI_g-normal then normal space.

Proof. Suppose that I is nano completely codense. By Theorem 3.1, (U, \mathcal{N}, I) is nI_g-normal if and only if for each pair of disjoint n-closed sets E and F, there exist disjoint nI_g-open sets G and H such that $E \subseteq G$ and $F \subseteq H$ if and only if G is normal.

Theorem 3.3. Let (U, \mathcal{N}, I) be a nI_g-normal space. If P is n-closed and E is a ng-closed set such that $E \cap P = \phi$, then there exist disjoint nI_g-open sets G and H such that $E \subseteq G$ and $P \subseteq H$.

Proof. Since $E \cap P = \phi$, $E \subseteq U - P$ where $U - P$ is n-open. Therefore, by hypothesis, $\text{ncl}(E) \subseteq U - P$. Since $\text{ncl}(E) \cap P = \phi$ and U is nI_g-normal, there exist disjoint nI_g-open sets G and H such that $\text{ncl}(E) \subseteq G$ and $P \subseteq H$.

Theorem 3.4. Let (U, \mathcal{N}, I) be a normal ideal nanotopological space which is nI_g-normal. Then the following hold.

(i) For every n-closed set E and every ng-open set F containing E, there exists a nI_g-open set G such that $E \subseteq \text{nint}^*(G) \subseteq G \subseteq F$.

(ii) For every ng-closed set E and every n-open set F containing E, there exists a nI_g-closed set G such that $E \subseteq G \subseteq \text{ncl}^*(G) \subseteq F$.

Proof. (i) Let E be a n-closed set and F be a ng-open set containing E. Then $E \cap (U - F) = \phi$, where E is n-closed and $U - F$ is ng-closed. By Theorem 3.3, there exist disjoint nI_g-open sets G and H such that $E \subseteq G$ and $U - F \subseteq H$.

Since $G \cap H = \phi$, we have $G \subseteq U - H$, then $E \subseteq \text{nint}^*(G)$. Therefore, $E \subseteq \text{nint}^*(G) \subseteq G \subseteq U - H \subseteq F$. This proves (i).

(ii) Let E be a ng-closed set and F be a n-open set containing E. Then $U - F$ is a n-closed set contained in the ng-open set $U - E$. By (i), there exists a nI_g-open set H such that $U - F \subseteq \text{nint}^*(H) \subseteq H \subseteq U - E$. Therefore, $E \subseteq U - H \subseteq \text{ncl}^*(U - H) \subseteq F$. If $G = U - H$, then $E \subseteq G \subseteq \text{ncl}^*(G) \subseteq F$ and so G is the required nI_g-closed set.

Definition 3.3. An ideal nanotopological space (U, N, I) is said to be nano gI-normal (briefly ngI-normal) if for each pair of disjoint nI_g-closed sets E and F, there exist disjoint n-open sets G and H in U such that $E \subseteq G$ and $F \subseteq H$.

Theorem 3.5. In an ideal nanotopological space (U, N, I), every n-closed set is nI_g-closed.

Proof. Obvious. \hfill \Box

Proposition 3.1. In an ideal nanotopological space (U, N, I), every ngI-normal space is normal. But the converse is not true as seen from the following Example.

Example 1. Let $U = \{n_1, n_2, n_3, n_4\}$ with $U/R = \{\phi, \{n_1\}, U\}$, $X = \{n_1\}$ and $I = \{\phi, \{n_1\}\}$. Since $\{n_1\}_n^* = \phi$, every n-open set is n^*-closed and so every subset of U is nI_g-closed. Now $A = \{n_1, n_2\}$ and $B = \{n_3, n_4\}$ are disjoint nI_g-closed sets, but they are not separated by disjoint n-open sets. So (U, N, I) is not ngI-normal. Since there is no pair of disjoint n-closed sets, (U, N, I) is normal.

Theorem 3.6. In an ideal nanotopological space (U, N, I), the following are equivalent.

(i) U is ngI-normal.

(ii) For every nI_g-closed set E and every nI_g-open set F containing E, there exists a n-open set G of U such that $E \subseteq G \subseteq \text{ncl}(G) \subseteq F$.

Proof.

(i) \Rightarrow (ii). Let E be a nI_g-closed set and F be a nI_g-open set containing E. Since E and $U - F$ are disjoint nI_g-closed sets, there exist disjoint n-open sets G and H such that $E \subseteq G$ and $U - F \subseteq H$. Now $G \cap H = \phi \Rightarrow \text{ncl}(G) \subseteq U - H$. Therefore, $E \subseteq G \subseteq \text{ncl}(G) \subseteq U - H \subseteq F$. This proves (ii).

(ii) \Rightarrow (i). Suppose E and F are disjoint nI_g-closed sets, then the nI_g-closed set E is contained in the nI_g-open set $U - F$. By hypothesis, there exists a n-open
set \(G \) of \(U \) such that \(E \subseteq G \subseteq ncl(G) \subseteq U - F \). If \(H = U - ncl(G) \), then \(G \) and \(H \) are disjoint \(n \)-open sets containing \(E \) and \(F \) respectively. Therefore, \((U, N, I)\) is \(ngl \)-normal.

\[\text{Theorem 3.7. In an ideal space } (U, N, I), \text{ the following are equivalent.} \]

(i) \(U \) is \(ngl \)-normal.

(ii) For each pair of disjoint \(nI_g \)-closed subsets \(E \) and \(F \) of \(U \), there exists a \(n \)-open set \(G \) of \(U \) containing \(E \) such that \(ncl(G) \cap F = \emptyset \).

(iii) For each pair of disjoint \(nI_g \)-closed subsets \(E \) and \(F \) of \(U \), there exists a \(n \)-open set \(G \) containing \(E \) and a \(n \)-open set \(H \) containing \(F \) such that \(ncl(G) \cap ncl(H) = \emptyset \).

\[\text{Proof.} \]

(i) \(\Rightarrow \) (ii). Suppose that \(E \) and \(F \) are disjoint \(nI_g \)-closed subsets of \(U \). Then the \(nI_g \)-closed set \(E \) is contained in the \(nI_g \)-open set \(U - F \). By Theorem 3.6, there exists a \(n \)-open set \(G \) such that \(E \subseteq G \subseteq ncl(G) \subseteq U - F \). Therefore, \(G \) is the required \(n \)-open set containing \(E \) such that \(ncl(G) \cap F = \emptyset \).

(ii) \(\Rightarrow \) (iii). Let \(E \) and \(F \) be two disjoint \(nI_g \)-closed subsets of \(U \). By hypothesis, there exists a \(n \)-open set \(G \) containing \(E \) such that \(ncl(G) \cap F = \emptyset \). Also, \(ncl(G) \) and \(F \) are disjoint \(nI_g \)-closed sets of \(U \). By hypothesis, there exists a \(n \)-open set \(H \) containing \(F \) such that \(ncl(G) \cap ncl(H) = \emptyset \).

(iii) \(\Rightarrow \) (i) The proof is clear.

\[\text{Theorem 3.8. Let } (U, N, I) \text{ be a } ngl \text{-normal space. If } E \text{ and } F \text{ are disjoint } nI_g \text{-closed subsets of } U, \text{ then there exists disjoint } n \text{-open sets } G \text{ and } H \text{ such that } ncl^*(E) \subseteq G \text{ and } ncl^*(F) \subseteq H. \]

\[\text{Proof. Suppose that } E \text{ and } F \text{ are disjoint } nI_g \text{-closed sets. By Theorem 3.7 (iii), there exists a } n \text{-open set } G \text{ containing } E \text{ and a } n \text{-open set } H \text{ containing } F \text{ such that } ncl(G) \cap ncl(H) = \emptyset \text{. Since } E \text{ is } nI_g \text{-closed, } E \subseteq G \Rightarrow ncl^*(E) \subseteq G. \text{ Similarly } ncl^*(F) \subseteq H. \]

\[\text{Theorem 3.9. Let } (U, N, I) \text{ be a } ngl \text{-normal space. If } E \text{ is a } nI_g \text{-closed set and } F \text{ is a } nI_g \text{-open set containing } E, \text{ then there exists a } n \text{-open set } G \text{ such that } E \subseteq ncl^*(E) \subseteq G \subseteq nint^*(F) \subseteq F. \]

\[\text{Proof. Suppose } E \text{ is a } nI_g \text{-closed set and } F \text{ is a } nI_g \text{-open set containing } E. \text{ Since } E \text{ and } U - F \text{ are disjoint } nI_g \text{-closed sets, by Theorem 3.8, there exist disjoint} \]
n-open sets \(G \) and \(H \) such that \(ncl^*(E) \subseteq G \) and \(ncl^*(U - F) \subseteq H \). Now, \(U - nint^*(F) = ncl^*(U - F) \subseteq H \Rightarrow U - H \subseteq nint^*(F) \). Again, \(G \cap H = \emptyset \Rightarrow G \subseteq U - H \) and so \(E \subseteq ncl^*(E) \subseteq G \subseteq U - H \subseteq nint^*(E) \subseteq F \). \(\square \)

Definition 3.4. A subset \(E \) of an ideal nanotopological space \((U, N, I)\) is said to be a nano regular generalized closed set with respect to an ideal \(I \) (briefly \(nI_g\)-closed) if \(E^*_n \subseteq G \) whenever \(E \subseteq G \) and \(G \) is \(n\)-regular open.

\(E \) is called \(nI_g\)-open if \(U - E \) is \(nI_g\)-closed.

Theorem 3.10. In an ideal nanotopological space \((U, N, I)\), every \(nI_g \)-closed set is \(nI_g \)-closed.

Proof. Follows from the Definitions 3.1 and 3.4

Lemma 3.1. Let \((U, N, I)\) be an ideal nanotopological spaces. A subset \(E \subseteq U \) is \(nI_g \)-open if and only if \(P \subseteq nint^*(E) \) whenever \(P \) is \(nr \)-closed and \(P \subseteq E \).

Proof. Suppose that \(E \) is \(nI_g \)-open. Let \(P \) be a \(nr \)-closed set contained in \(E \).

Then \(U - E \subseteq U - P \) and \(U - P \) is \(nr \)-open. Since \(U - E \) is \(nI_g \)-closed, \(ncl^*(U - E) \subseteq U - P \) and so \(P \subseteq U - ncl^*(U - E) = nint^*(E) \).

Conversely, suppose \(U - E \subseteq G \) and \(G \) is \(nr \)-open. Then \(U - G \subseteq E \) and \(U - G \) is \(nr \)-closed. By our assumption, \(U - G \subseteq nint^*(E) \) and so \(U - nint^*(E) \subseteq G \) which implies that \(ncl^*(U - E) \subseteq G \). Therefore, \(U - E \) is \(nI_g \)-closed and so \(E \) is \(nI_g \)-open. \(\square \)

Definition 3.5. A space \((U, N)\) is said to be a mildly nano normal (briefly mildly \(n \)-normal), if disjoint \(nr \)-closed sets are separated by disjoint \(n \)-open sets.

Theorem 3.11. Let \((U, N, I)\) be an ideal nanotopological space, where \(I \) is nano completely codense. Then the following are equivalent.

(i) \(U \) is mildly \(n \)-normal.

(ii) For disjoint \(nr \)-closed sets \(E \) and \(F \), there exist disjoint \(nI_g \)-open sets \(G \) and \(H \) such that \(E \subseteq G \) and \(F \subseteq H \).

(iii) For disjoint \(nr \)-closed sets \(E \) and \(F \), there exist disjoint \(nI_g \)-open sets \(G \) and \(H \) such that \(E \subseteq G \) and \(F \subseteq H \).

(iv) For a \(nr \)-closed set \(E \) and a \(nr \)-open set \(H \) containing \(E \), there exists a \(nI_g \)-open set \(G \) of \(U \) such that \(E \subseteq G \subseteq ncl^*(G) \subseteq H \).

(v) For a \(nr \)-closed set \(E \) and a \(nr \)-open set \(H \) containing \(E \), there exists a \(n^* \)-open set \(G \) of \(U \) such that \(E \subseteq G \subseteq ncl^*(G) \subseteq H \).
(vi) For disjoint \(nr \)-closed sets \(E \) and \(F \), there exist disjoint \(n\ast \)-open sets \(G \) and \(H \), such that \(E \subseteq G \) and \(F \subseteq H \).

Proof.

(i) \(\Rightarrow \) (ii). Suppose that \(E \) and \(F \) are disjoint \(nr \)-closed sets. Since \(U \) is mildly normal, there exists \(n \)-open sets \(G \) and \(H \) such that \(E \subseteq G \) and \(F \subseteq H \). But every \(n \)-open set is a \(nI_g \)-open set. This proves (ii).

(ii) \(\Rightarrow \) (iii). The proof follows from the fact that every \(nI_g \)-open set is a \(nI_{rg} \)-open set.

(iii) \(\Rightarrow \) (iv). Suppose \(E \) is \(nr \)-closed and \(F \) is a \(nr \)-open set containing \(E \). Then \(E \) and \(U - F \) are disjoint \(nr \)-closed sets. By hypothesis, there exists disjoint \(nI_{rg} \)-open sets \(G \) and \(H \) such that \(E \subseteq G \) and \(U - F \subseteq H \). Since \(U - F \) is \(nr \)-closed and \(H \) is \(nI_{rg} \)-open, then \(U - F \subseteq nint^*(H) \) and so \(U - nint^*(H) \subseteq F \). Again, \(G \cap H = \phi \) implies that \(G \cap nint^*(H) = \phi \) and so \(ncl^*(G) \subseteq U - nint^*(H) \subseteq F \). Hence \(G \) is required \(nI_{rg} \)-open set such that \(E \subseteq G \subseteq ncl^*(G) \subseteq F \).

(iv) \(\Rightarrow \) (v). Let \(E \) be a \(nr \)-closed set and \(H \) be a \(nr \)-open set containing \(E \). Then there exists a \(nI_{rg} \)-open set \(J \) of \(U \) such that \(E \subseteq J \subseteq ncl^*(J) \subseteq H \). By Lemma 3.1, \(E \subseteq nint^*(J) \). If \(G = nint^*(J) \), then \(G \) is a \(n\ast \)-open set and \(E \subseteq G \subseteq ncl^*(G) \subseteq ncl^*(J) \subseteq H \). Therefore, \(E \subseteq G \subseteq ncl^*(G) \subseteq H \).

(v) \(\Rightarrow \) (vi). Let \(E \) and \(F \) be disjoint \(nr \)-closed subsets of \(U \). Then \(U - F \) is a \(nr \)-open set containing \(E \). By hypothesis, there exists a \(n\ast \)-open set \(G \) of \(U \) such that \(E \subseteq G \subseteq ncl^*(G) \subseteq U - F \). If \(H = U - ncl^*(G) \), then \(G \) and \(H \) are disjoint \(n\ast \)-open sets of \(U \) such that \(E \subseteq G \) and \(F \subseteq H \).

(vi) \(\Rightarrow \) (i). Let \(E \) and \(F \) be disjoint \(nr \)-closed sets of \(U \). Then there exist disjoint \(n\ast \)-open sets \(G \) and \(H \) such that \(E \subseteq G \) and \(F \subseteq H \). Since \(I \) is nano completely codense, then \(\mathcal{N}^* \subseteq \mathcal{N}^\alpha \) and so \(G, H \in \mathcal{N}^\alpha \). Hence \(E \subseteq G \subseteq nint(ncl(nint(G))) = J \) and \(F \subseteq H \subseteq nint(ncl(nint(H))) = K \). \(J \) and \(K \) are the required disjoint \(n \)-open sets containing \(E \) and \(F \) respectively. This proves (i).

\(\square \)

4. \(nI_g \)-regular spaces

Definition 4.1. An ideal nanotopological space \((U, \mathcal{N}, I)\) is said to be a nano \(I_g \)-regular space (briefly \(nI_g \)-regular space) if for each pair consisting of a point \(y \) and a closed set \(F \) not containing \(y \), there exist disjoint \(nI_g \)-open sets \(G \) and \(H \) such that \(y \in G \) and \(F \subseteq H \).
Theorem 4.1. In an ideal nanotopological space \((U, N, I)\), the following are equivalent.

(i) \(U\) is \(nI_g\)-regular.
(ii) For every \(n\)-closed set \(F\) not containing \(a\), there exist disjoint \(nI_g\)-open sets \(G\) and \(H\) such that \(a \in G\) and \(F \subseteq H\).
(iii) For every \(n\)-open set \(H\) containing \(a\), there exists a \(nI_g\)-open set \(G\) of \(U\) such that \(a \subseteq G \subseteq ncl^*(G) \subseteq H\).

Proof.
(i) and (ii) are equivalent by the Definition 4.1.

(ii) \(\Rightarrow\) (iii). Let \(H\) be a \(n\)-open subset such that \(a \in H\). Then \(U - H\) is a \(n\)-closed set not containing \(a\). Therefore, there exist disjoint \(nI_g\)-open sets \(G\) and \(S\) such that \(a \in G\) and \(U - H \subseteq S\). Now, \(U - H \subseteq S\) implies that \(U - H \subseteq nint^*(S)\) and so \(U - nint^*(S) \subseteq H\). Again, \(G \cap S = \emptyset\) implies that \(G \cap nint^*(S) = \emptyset\) and so \(ncl^*(G) \subseteq U - nint^*(S)\). Therefore, \(a \in G \subseteq ncl^*(G) \subseteq H\). This proves (iii).

(iii) \(\Rightarrow\) (i). Let \(F\) be a \(n\)-closed set not containing \(a\). By hypothesis, there exists a \(nI_g\)-open set \(G\) such that \(a \in G \subseteq ncl^*(G) \subseteq U - F\). If \(S = U - ncl^*(G)\), then \(G\) and \(S\) are disjoint \(nI_g\)-open sets such that \(a \in G\) and \(F \subseteq S\). This proves (i).

Theorem 4.2. If \((U, N, I)\) is a \(nI_g\)-regular, \(nT_1\)-space where \(I\) is nano completely codense, then \(U\) is \(nr\)-closed.

Proof. Let \(F\) be a \(n\)-closed set not containing \(a \in U\). By Theorem 4.1, there exists a \(nI_g\)-open set \(G\) of \(U\) such that \(a \in G \subseteq ncl^*(G) \subseteq U - F\). Since \(U\) is a \(nT_1\)-space, \(\{a\}\) is \(n\)-closed and so \(\{a\} \subseteq nint^*(G)\). Since \(I\) is nano completely codense, \(N^* \subseteq N^a\) and so \(nint^*(G)\) and \(U - ncl^*(G)\) are \(N^a\)-open sets. Now, \(a \in nint^*(G) \subseteq nint(ncl(nint(nint^*(G)))) = J\) and \(F \subseteq U - ncl^*(G) \subseteq nint(ncl(nint(U - ncl^*(G)))) = K\). Then \(J\) and \(K\) are disjoint \(n\)-open sets containing \(a\) and \(F\) respectively. Therefore, \(U\) is \(nr\)-closed.

Theorem 4.3. If every \(n\)-open subset of an ideal nanotopological space \((U, N, I)\) is \(n^*\)-closed, then \((U, N, I)\) is \(nI_g\)-regular.

Proof. Suppose every \(n\)-open subset of \(U\) is \(n^*\)-closed. Then every subset of \(U\) is \(nI_g\)-closed and hence every subset of \(U\) is \(nI_g\)-open. If \(F\) is a \(n\)-closed set not containing \(a\), then \(\{a\}\) and \(F\) are the required disjoint \(nI_g\)-open sets containing \(a\) and \(F\) respectively. Therefore, \((U, N, I)\) is \(nI_g\)-regular.
Theorem 4.4. Let \((U, \mathcal{N}, I)\) be an ideal topological space where \(I\) is nano completely codense. Then the following are equivalent.

(i) \(U\) is \(n_r\)-closed.

(ii) For every \(n\)-closed set \(E\) and each \(a \in U - E\), there exist disjoint \(n^*\)-open sets \(G\) and \(H\) such that \(a \in G\) and \(E \subseteq H\).

(iii) For every \(n\)-open set \(H\) of \(U\) and \(a \in H\), there exists a \(n^*\)-open set \(G\) such that \(a \in G \subseteq ncl^*(G) \subseteq H\).

Proof.

(i) \(\Rightarrow\) (ii). Let \(E\) be a \(n\)-closed subset of \(U\) and let \(a \in U - E\). Then there exist disjoint \(n\)-open sets \(G\) and \(H\) such that \(a \in G\) and \(E \subseteq H\). But every \(n\)-open set is \(n^*\)-open. This proves (ii).

(ii) \(\Rightarrow\) (iii). Let \(H\) be a \(n\)-open set containing \(a \in U\). Then \(U - H\) is \(n\)-closed and \(a \in H\). By hypothesis, there exist disjoint \(n^*\)-open sets \(G\) and \(S\) such that \(a \in G\) and \(U - H \subseteq S\). Since \(G \cap S = \emptyset\), we have \(G \subseteq U - S\) and \(U - S\) is \(n^*\)-closed. So \(ncl^*(G) \subseteq U - S \subseteq H\). Therefore, \(G\) is the required \(n^*\)-open set such that \(a \in G \subseteq ncl^*(G) \subseteq H\).

(iii) \(\Rightarrow\) (i). Let \(E\) be a \(n\)-closed set and \(a \notin E\). By (iii), there exists a \(n^*\)-open set \(G\) such that \(a \in G \subseteq ncl^*(G) \subseteq U - E\). Let \(H = U - ncl^*(G)\). Then \(E \subseteq H\), and \(G\) and \(H\) are disjoint \(n^*\)-open sets. Since \(I\) is nano completely codense, \(N^* \subseteq N^\alpha\) and so \(G\) and \(H\) are \(N^\alpha\)-open sets. Therefore, \(G \subseteq nint(ncl(nint(G))) = J\) and \(E \subseteq H \subseteq nint(ncl(nint(H))) = K\). Then \(J\) and \(K\) are disjoint \(n\)-open sets such that \(a \in J\) and \(E \subseteq K\). Hence \(U\) is \(n\)-regular.

\(\square\)

Theorem 4.5. Let \((U, \mathcal{N}, I)\) be an ideal nanotopological space, where \(I\) is nano completely codense. Then the following are equivalent.

(i) \(U\) is almost \(n\)-regular.

(ii) For each \(n_r\)-closed set \(E\) and each \(a \in U - E\), there exist disjoint \(n^*\)-open sets \(G\) and \(H\) such that \(a \in G\) and \(E \subseteq H\).

(iii) For each \(n_r\)-open set \(H\) and \(a \in H\), there exists a \(n^*\)-open set \(G\) such that \(a \in G \subseteq ncl^*(G) \subseteq H\).

Proof.
(i) ⇒ (ii). Let $E \subseteq U$ be nr-closed and $a \in U - E$. Then there exist disjoint n-open sets G and H such that $a \in G$ and $E \subseteq H$. Since every n-open set is a n^\star-open set, the proof follows.

(ii) ⇒ (iii). Let H be nr-open and $a \in H$. By (ii), there exist disjoint n^\star-open sets G and S such that $a \in G$ and $U - H \subseteq S$. Since $G \cap S = \phi$, we have $ncl^\ast(G) \subseteq U - S \subseteq H$. Therefore, G is the required n^\star-open set such that $a \in G \subseteq ncl^\ast(G) \subseteq H$.

(iii) ⇒ (i). Let E be nr-closed and $a \in U - E$. By hypothesis, there exists a n^\star-open set G such that $a \in G \subseteq ncl^\ast(G) \subseteq U - E$. Let $H = U - ncl^\ast(G)$. Then $E \subseteq H$, and G, H are disjoint n^\star-open sets. Since I is nano completely codense, $n\tau^\star \subseteq n\tau^\alpha$ and so G and H are na-open sets. Therefore, we have $a \in G \subseteq nint(ncl(nint(G))) = J$ and $E \subseteq H \subseteq nint(ncl(nint(H))) = K$. Then J and K are the required disjoint n-open sets such that $a \in J$ and $E \subseteq K$. Hence U is almost n-regular.

\[\Box\]

References

Department of Mathematics,
Senthamarai College of Arts and Science,
Madurai District, Tamil Nadu, India.
Email address: prem.rpk27@gmail.com

Department of Mathematics,
Pasumpon Muthuramalinga Thevar College, Usilampatti,
Madurai District, Tamil Nadu, India.
Email address: proframesh9@gmail.com

Department of Mathematics,
Ananda College,
Sivaganga District, Tamil Nadu, India.
Email address: sanantodavid@gmail.com