OBSERVATION ON SUMS OF POWERS OF INTEGERS DIVISIBLE BY \((2K^2 - 1)\)

MARNIATI\(^1\), LA ODE SIRAD, AND NOVY HADIYANI

Abstract. Sum of powers of integers has been the subject of research for many years. Many new integer sequences are increasing recently. Gulliver (2010) considered the sum of powers of odd integers of the forms \(2k - 1\) and obtained a simple derivation of some well-known sequences as well as construction of many new sequences. Several authors have been continued the observation of Gulliver recently. This study furthered observe the sum of powers of odd integers of the form \(2k^2 - 1\) which were unknown before. We obtain a simple derivation of some well-known sequences as well as construction of many new sequences. We also derive several properties of divisibility of the sequences.

1. **Introduction**

Various branches of mathematics discuss integers and many books discuss rows of integers. But in reality, there are still many lines of integers that are still not listed in these books. In 1973, the various rows of unregistered integers were collected by Neil J. A. Sloane [1] in a book called A Handbook of Integer Sequences, which contained 2372 rows of numbers.

After many years the ranks of new integers increased, so that in 1995, [1], he Encyclopedia of Integer Sequences, which contained 5487 sequences of numbers and in 1996 the website of The On-Line of Integer Sequences was launched.

\(^1\)corresponding author

2010 Mathematics Subject Classification. 11Y99.

Key words and phrases. Integer sequences, Divisibility.

5335
Until 2014, there were more than 250000 rows of numbers listed on the website of The On-Line of Integer Sequences.

Gulliver [2] constructs several rows of new numbers by reviewing rows and the property of its divisibility:

\[\sum_{k=1}^{n} (2k - 1)^m, \]

by looking at the sequences

\[\left\{ \sum_{k=1}^{n} (2k - 1)^m \right\}^n_{m=1}. \]

Gulliver reconstructed several known sequences in an easy manner, as well as constructed many new sequences. For example, for \(n = 2 \) and \(n = 3 \) in the sequence formed by \(\left\{ \sum_{k=1}^{2} (2k - 1)^m \right\}^n_{m=1} \) and \(\left\{ \sum_{k=1}^{3} (3k - 1)^m \right\}^n_{m=1} \) are 034472 and 074507 in The Online Encyclopedia of Integer Sequences, [3], respectively. Suwarno [4] constructs the sequence of numbers formed by \(\sum_{i=1}^{n} (pi - 1)^m \) for \(p = 3, 4 \) and 5 which can be seen in [2]. Iskandar [5] constructs a line of new integers formed by \(\sum_{i=1}^{n} (pi - 1)^m \) for \(p = 6 \) and 7. Suprijanto [6] constructs a line of new integers formed by \(\sum_{k=1}^{n} (3k - 1)^m \). This study aims to construct a series of integers formed based on the rule

\[\sum_{k=1}^{n} (2k^2 - 1)^m, \]

where \(m, n \in N \) and compare the ranks with those in The On-Line Encyclopedia of Integer Sequences.

By considering sequences of the above form, we succeed to reconstruct several known sequences. We also constructed many new sequences which were unknown to exist in [2] before. We follow the method and observation introduced by Gulliver in [3].

2. Results

In this section we consider the sum of the first \(n \) of \(m \)-th powers of \(2k^2 - 1 \) as follows

\[\sum_{k=1}^{n} (2k^2 - 1)^m. \]
We divide our observation into two cases: \(n \) fixed and \(m \) fixed.

2.1. **Case 1: \(n \) fixed.** For \(n = 1 \), we have \(\{1^m\} \), the sequence \(A000012 \) in [3].

For \(n = 2 \) to 10, the values are

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>50</td>
<td>344</td>
<td>2402</td>
<td>16808</td>
<td>117650</td>
</tr>
<tr>
<td>25</td>
<td>339</td>
<td>5257</td>
<td>85923</td>
<td>1436665</td>
<td>24255219</td>
</tr>
<tr>
<td>56</td>
<td>1300</td>
<td>35048</td>
<td>1009444</td>
<td>30065816</td>
<td>911758900</td>
</tr>
<tr>
<td>105</td>
<td>3701</td>
<td>152697</td>
<td>6774245</td>
<td>312541065</td>
<td>14753046101</td>
</tr>
<tr>
<td>176</td>
<td>8742</td>
<td>510608</td>
<td>32185926</td>
<td>2116770116</td>
<td>14285330022</td>
</tr>
</tbody>
</table>
| 273| 18151| 1423281| 120715207| 975825334951| ...
| 400| 34280| 3471664| 380859848| 43742480080| ...
| 561| 60201| 7644945| 1052758089| 22587972554601| ...
| 760| 99802| 15525544| 2620997290| 84691813153402| ...

Table 1

The sequence is named \(A034491 \) in [3], and the other sequence is a new line. The first column is called \(A131422 \) in [3]. If you pay attention to \(n = 2, 4, 6, 8, 10 \) all the values are even numbers for the next \(n \) sequence. We obtained:

\[
2 \mid \sum_{k=1}^{n} (2k^2 - 1)^m, \exists n, m \in \mathbb{N}.
\]

The unit numbers on each line repeat every four elements. To show more clearly, the values above are presented in modulo 10 in the Table 2.

The remainder of division 10 in integers 1, 7, 17, 31, 49, 71, 97, 127, 161 and 99 if they are raised are presented in Table 3.

The periods of these residues are:

\(1, 31, 71, 161 \): period 1
\(49, 199 \): period 2
\(7, 17, 97, 127 \): period 3

which are all factors of \(\theta(10) = 4 \), where \(\theta \) is an Euler-\(\theta \) function. These values show that the period of the unit digits of numbers 2 must be 4.

To prove Table 3 can be solved by doing mathematical induction. Taking the value (1.2) of modulo 3, for \(n = 3 \) and \(n = 6 \), with an even number \(m \), it is obtained:

\[
3 \mid \sum_{k=1}^{n} (2k^2 - 1)^m.
\]
The remainder of the modulo 3 division of odd-numbered integers \((2k^2 - 1)^m\) that the period of the remainder of division by 3 is one of 1 or 2, because \(\theta(3) = 2\). For \(n = 5\) and \(7\) with odd \(m\), we get:

\[
3 \mid \sum_{k=1}^{n} (2k^2 - 1)^m .
\]
For $n = 9$, we get:

$$3 \mid \sum_{k=1}^{n} (2k^2 - 1)^m.$$

Another interesting point is obtained when (1.2) is displayed by taking the values at the remainder of the division in modulo 4, for $n = 2, 6$ and 10 with odd m obtained:

$$4 \mid \sum_{k=1}^{n} (2k^2 - 1)^m,$$

and also for $n = 4$ and 8, we get:

$$4 \mid \sum_{k=1}^{n} (2k^2 - 1)^m.$$

With the remainder of the modulo division of 4 of the odd number rank $(2k^2 - 1)^m$ that period of the remainder of the division by 4 is 1 or 2, because $\theta(4) = 2$. Also if (3.3) is displayed by taking the values at the remainder of the division of modulo 8, for $n = 2, 4, 6$ and 10 with odd m is obtained:

$$8 \mid \sum_{k=1}^{n} (2k^2 - 1)^m,$$

and for $n = 8$, we obtained:

$$8 \mid \sum_{k=1}^{n} (2k^2 - 1)^m.$$

The remainder of the modulo division of 8 of the odd number rank $(2k^2 - 1)^m$ that the period of the remainder of the division by 8 is 1 or 2, because $\theta(8) = 4$.

2.2. **Case 2: m fixed.** Finally, we consider the sequences from the columns in (2.1). As we mentioned above, for $m = 1, 2$ and 3.

For $m = 1$

$$\sum_{k=1}^{n} (2k^2 - 1)^m = \frac{1}{3}n(n+2)(2n-1)$$
showing:

\[5 \mid \sum_{k=1}^{n}(2k^2 - 1)^m, \text{ for } n = 5r \text{ and } 5r - 2 \text{ with } r \geq 1 \]

\[\sum_{k=1}^{n}(2k^2 - 1)^m = \frac{1}{3}n(n+2)(n-1) \]

\[2 \mid \sum_{k=1}^{n}(2k^2 - 1), \text{ for } n = 2r, r \geq 1. \]

The above statement can be indicated by the explanation below:

\[2 \mid \sum_{k=1}^{n}(2k^2 - 1) = 2 \mid \frac{1}{3}2r(2r+2)(4r-1). \]

Clearly that \(2 \mid 2r(2r+2)(4r-1), \) showed that \(3 \mid r(2r+2)(4r-1), r \geq 1. \)

1. \(r = 3\alpha, \alpha \in \mathbb{Z}^+ \) obtained \(3 \mid 3\alpha(6\alpha + 2)(12\alpha - 1). \)
 So, \(3 \mid r(2r+2)(4r-1) \) for \(r = 3\alpha. \)

2. \(r = 3\alpha + 1, \alpha \in \mathbb{Z}^+ \) obtained \(3 \mid 3(3\alpha + 1)(6\alpha + 4)(4\alpha + 1). \)
 So, \(3 \mid r(2r+2)(4r-1) \) for \(r = 3\alpha + 1. \)

3. \(r = 3\alpha + 2, \alpha \in \mathbb{Z}^+ \) obtained \(3 \mid 3(3\alpha + 2)(2\alpha + 2)(12\alpha + 7). \)
 So, \(3 \mid r(2r+2)(4r-1) \) for \(r = 3\alpha + 2. \)

Therefore, for \(n = 2r \) then \(2 \mid 2r(2r+2)(4r-1). \) Mean while for \(n = 2r - 1 \) is obtained

\[2 \mid \sum_{k=1}^{n}(2k^2 - 1) = 2 \mid \frac{1}{3}(2r-1)(2r+1)(4r-3). \]

Also note that

\[\sum_{k=1}^{n}(2k^2 - 1) = \frac{1}{3}n(n+2)(2n-1), \]

showing

\[4 \mid \sum_{k=1}^{n}(2k^2 - 1), \text{ for } n = 2r \text{ and } 4r - 2, r \geq 1. \]

For \(m = 2 \)

\[\sum_{k=1}^{n}(2k^2 - 1)^2 = \frac{1}{5}n(4n^4 + 10n^3 - 10n + 1), \]
showing:

\[2 \mid \sum_{k=1}^{n} (2k^2 - 1)^2, \text{ for } n = 2r \text{ and } n = 2r - 1 \text{ with } r \geq 1. \]

Also note that

\[\sum_{k=1}^{n} (2k^2 - 1)^2 = \frac{1}{5}n(4n^4 + 10n^3 - 10n + 1), \]

then

\[3 \mid \sum_{k=1}^{n} (2k^2 - 1)^2, \text{ for } n = 3r \text{ with } r \geq 1, \]

and

\[\sum_{k=1}^{n} (2k^2 - 1)^2 = \frac{1}{5}n(4n^4 + 10n^3 - 10n + 1), \]

then

\[4 \mid \sum_{k=1}^{n} (2k^2 - 1)^2, \text{ for } n = 4r \text{ with } r \geq 1. \]

For \(m = 3 \)

\[\sum_{k=1}^{n} (2k^2 - 1)^3 = \frac{1}{105}n(n + 2)(120n^5 + 180n^4 - 192n^3 - 216n^2 + 142n + 31), \]

showing

\[2 \mid \sum_{k=1}^{n} (2k^2 - 1)^3, \text{ for } n = 2r \text{ with } r \geq 1. \]

3. Remarks

As we showed above, what we did in this paper is an observation on the sequences of the form (2.1) and their related properties. We reconstructed several known sequences as listed in [2] in an elementary way as well as constructed many new sequences. We are now working on rigorous proofs for the above results and conjectures. The paper, which is now in preparation, will be published elsewhere in a separate paper.
ACKNOWLEDGMENT

The authors would like to thank the anonymous referee(s) for careful reading and many helpful comments.

REFERENCES

DEPARTMENT OF EDUCATION MATHEMATICS
UNIVERSITY OF SEMBILANBELAS NOVEMBER KOLAKA
JL. PEMUDA NO. 339 KOLAKA
E-mail address: bungaitb@gmail.com

DEPARTMENT OF EDUCATION MATHEMATICS
UNIVERSITY OF SEMBILANBELAS NOVEMBER KOLAKA
JL. PEMUDA NO. 339 KOLAKA
E-mail address: laodesirad.usnkolaka@gmail.com

DEPARTMENT OF AL-IRSYAD SATYA ISLAMIC SCHOOL
JL. PARAHYANGAN RAYA, CIEUNDEUY, PADAOLANG
E-mail address: novyhadiyani@gmail.com