COMPLETE AND CYCLE GRAPH COVERS IN A ZERO DIVISOR GRAPH

A. KUPPAN AND J. RAVI SANKAR

ABSTRACT. Let R be a commutative ring and let $\Gamma(Z_n)$ be the zero divisor graph of a commutative ring R, whose vertices are non-zero zero divisors of Z_n, and such that the two vertices u, v are adjacent if n divides uv. In this paper, we introduce the concept of Decomposition of Zero Divisor Graph in a commutative ring and also discuss some special cases of $\Gamma(Z_{2^p2^q}), \Gamma(Z_{3^p2^q}), \Gamma(Z_{5^p2^q}), \Gamma(Z_{7^p2^q})$ and $\Gamma(Z_{p^2q^2})$.

1. INTRODUCTION

All graphs considered here are finite and undirected, unless otherwise noted. For the standard graph-theoretic terminology the reader is referred to [4].

As usual K_n denotes the complete graph on n vertices and $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. Let P_k denote a path of length k and let S_k denote a star with k edges. Let C_k denote a cycle of length K, i.e., $S_k \equiv K_{1,k}$. Let $D(K_{m,n})$ be the decomposition of complete bipartite graph. Let $L = \{H_1, H_2, ..., H_r\}$ be a family of subgraphs of G. An L-decomposition of G is an edge-disjoint decomposition of G into positive integer α_i copies of H_i where $i \in \{1,2,3,\ldots,r\}$. Furthermore, if each $H_i(i \in \{1,2,3,\ldots,r\})$ is isomorphic to a graph H, then we say that G has an H-decomposition.

1 corresponding author

2010 Mathematics Subject Classification. 05C25, 06A11, 05C70.

Key words and phrases. Graph decomposition, zero divisor graph.

5965
The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck’s in [3]. Given a ring R, let $G(R)$ denote the graph whose vertex set is R, such that distinct vertices r and s are adjacent provided that $rs = 0$. I. Beck’s main interest was the chromatic number $\chi(G(R))$ of the graph $G(R)$. The general terminology, notation everything based on the papers [1, 2, 6–9]. In this paper we investigate the decomposition of $\Gamma(Z_{p^2q^2})$ into cycles and stars [5, 10] and obtain the following results.

2. Preliminaries

Definition 2.1. [1] Let R be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. We associate a (simple) graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of nonzero zero-divisor of R, and for distinct $x, y \in Z(R)^*$ the vertices x and y are adjacent if and only if $xy = 0$. Thus $\Gamma(R)$ is the empty graph if and only if R is an integral domain.

Definition 2.2. A graph G is decomposable into $H_1, H_2, H_3, \ldots, H_k$ if G has subgraphs $H_1, H_2, H_3, \ldots, H_k$ such that

1. each edge of G belongs to one of the H_i’s for some $i = 1, 2, 3, \ldots, k$ and
2. if $i \neq j$, then H_i and H_j have no edges in common.

Theorem 2.1. [10] For any distinct prime p and q, $\Gamma(Z_{pq})$ can be decomposable into $(q - 1)C_{p-1}$, where $q > p$.

3. Decomposition of zero divisor graph $\Gamma(Z_{p^2q^2})$

In this section we investigate the problem of decomposing zero divisor graphs $\Gamma(Z_{p^2q^2})$ into complete graph $K_{pq - 1}$ and $3pq(p - 1)(q - 1)/4$ copies of C_4, for each p and q are distinct prime numbers with $q > p$.

Theorem 3.1. If p is any prime number and $p > 2$, then $\Gamma(Z_{2p^2})$ is decomposition into 1-copie of star graph $K_{1, 2p(p - 1)}$, 1-copie of complete graph $K_{2p - 1}$ and $p(p - 1)$ copies of C_4.

Proof. Let p is any prime number with $p > 2$. Let $\Gamma(Z_{2p^2})$ be the non-zero zero divisor graph. The vertex set of $\Gamma(Z_{2p^2})$ is $V(\Gamma(Z_{2p^2})) = \{2, 4, 6, \ldots, 2^2p^2 - 2, p, 2p, 3p, \ldots, 2^2p^2 - p\}$.
Case (i): Let us consider vertex subsets are $V_1, V_2, V_3 \in V$ where $V_1 = \{2p^2\}$, $V_2 = \{4, 8, 12, \ldots, 4p(p-1)\}$, $V_3 = V_3 \setminus V_2 = \{2, 6, 10, \ldots, 2(2p^2 - 1)\}$. That is $|V_1| = 1$, $|V_2| = p(p-1)$, $|V_3| = p(p-1)$.

The vertex $V_1 = \{2p^2\}$ be the middle vertex this vertex $v_1 \in V_1$ is adjacent to all the vertex sets V_1 and V_2. Then clearly there exits two star graphs namely $K_{1,p(p-1)}$ and $K_{1,p(p-1)}$. Hence $K_{1,2(p-1)}$ with $2(p-1)$ edges.

Case (ii): Let assume the vertex subset in $V_4 \in \Gamma(Z_{2p^2})$ where $V_4 = \{2p, 4p, 6p, \ldots, 2p(2p-1)\}$. If any two vertices in $u, v \in V_4$ and every vertex u is an adjacent to v then there exits an edge between u and v. Clearly the vertex set V_4 is complete graph K_{2p-1} with $2p-1$ vertices.

Case (iii): Let the zero-divisor graph $\Gamma(Z_{2p^2})$ be decompose three type of complete bipartite graphs are $K_{2(p-1),(p-1)}$, $K_{2,(p-1)}$ and $K_{2,p(p-1)}$. By theorem[2.3] clearly shows this three complete bipartite graph covers in $p(p-1)$ copies of C_4. Hence the above three cases clearly shows the given graph $\Gamma(Z_{2p^2})$ is covers 1-copie of star graph, 1-copie of complete graph and $p(p-1)$ copies of C_4. □

Theorem 3.2. If p is any prime number and $p > 3$, then $\Gamma(Z_{2p^2})$ is decomposition into 1-copie of complete graph K_{3p-1} with $3p - 1$ vertices and $\frac{9p(p-1)}{2}$ copies of C_4.

Proof. Let p is any prime number with $p > 3$ and let $\Gamma(Z_{2p^2})$ be the non-zero zero divisor graph. The vertex set of $\Gamma(Z_{2p^2})$ is $V = \{3, 6, 9, \ldots, 3(3p^2 - 1), p, 2p, 3p, \ldots, p(9p - 1)\}$.

Case (i) Let the vertex subset $V_1 \in V$ where $V_1 = \{3p, 6p, 9p, \ldots, 3p(3p - 1)\}$. The cardinality of V_1 is $3p - 1$. If any two vertices $v_1, v_2 \in V_1$ are adjacent then clearly the vertex set V_1 is complete graph K_{3p-1} with $3p - 1$ vertices.

Case (ii) Consider the vertex subsets are $V_2, V_3, V_4, V_5, V_6, V_7 \in V(\Gamma(Z_{2p^2}))$ where $V_2 = V_2 \setminus V_1 = \{p, 2p, 3p, \ldots, 8p\}$, $V_3 = \{9p, 18p, 27, \ldots, 9p(p-1)\}$, $V_4 = \{p^2, 2p^2, 3p^2, \ldots, 8p^2\}$, $V_5 = \{9, 18, 27, \ldots, 9(p^2 - 1)\}$, $V_6 = V_6 \setminus V_5 = \{3, 6, 9, \ldots, 3(3p^2 - 1)\}$ and $V_7 = \{3p^2, 6p^2\}$. The cardinality of above vertex sets are $|V_2| = 6(p-1)$, $|V_3| = p-1$, $|V_4| = 6$, $|V_5| = p(p-1)$, $|V_6| = 2p(p-1)$ and $|V_7| = 2$. If the pairs of vertex sets $(V_2, V_3), (V_3, V_4), (V_4, V_5), (V_5, V_7)$ and (V_7, V_6) are adjacent then clearly there exits $K_{6(p-1),(p-1)}, K_{(p-1),6}, K_{6,p(p-1)}, K_{p(p-1),2}, K_{2,2p(p-1)}$ complete bipartite graphs. By the theorem[2.3] shows complete bipartite graph coves some copies.
of \(C_4\). Then follows sum of all \(K_{6(p-1),(p-1)} + K_{(p-1),6} + K_{6,p(p-1)} + K_{p(p-1),2} + K_{2,2p(p-1)} = \frac{6(p-1)(p-1)}{4} + \frac{6(p-1)}{4} + \frac{6p(p-1)}{4} + \frac{2p(p-1)}{4} + \frac{4p(p-1)}{4} = \frac{9p(p-1)}{2}\). Clearly above cases shows that the graph of \(\Gamma(Z_{52p^2})\) is decomposition into 1 - copie of complete graph \(K_{3p-1}\) with \(3p - 1\) vertices and \(\frac{9p(p-1)}{2}\) copies of \(C_4\).

\[\blacksquare\]

Theorem 3.3. If \(p\) is any prime number and \(p > 5\), then \(\Gamma(Z_{52p^2})\) is decomposition into 1-copie of complete graph \(K_{5p-1}\) with \(5p - 1\) vertices and \(15p(p-1)\) copies of \(C_4\).

Proof. Let \(p\) is any prime number with \(p > 5\) and let \(\Gamma(Z_{52p^2})\) be the non-zero zero divisor graph. The vertex set of \(\Gamma(Z_{52p^2})\) is \(V = \{5, 10, 15, \ldots, 5(5p^2 - 1), p, 2p, 3p, \ldots, p(25p - 1)\}\).

Case (i) Let the vertex subset \(V_1 \in V\) where \(V_1 = \{5p, 10p, 15p, \ldots, 5p(5p - 1)\}\).

The cardinality of \(V_1\) is \(5p - 1\). If any two vertices \(v_1, v_2 \in V_1\) are adjacent then clearly the vertex set \(V_1\) is complete graph \(K_{5p-1}\) with \(5p - 1\) vertices.

Case (ii) Consider the vertex subsets are \(V_2, V_3, V_4, V_5, V_6, V_7 \in V(\Gamma(Z_{52p^2}))\) where \(V_2 = V_2 \setminus V_1 = \{p, 2p, 3p, \ldots, 24p\}\), \(V_3 = \{25p, 50p, 75p, \ldots, 25p(p - 1)\}\), \(V_4 = \{p^2, 2p^2, 3p^2, \ldots, 24p^2\}\), \(V_5 = \{25, 50, 75, \ldots, 25(p^2 - 1)\}\), \(V_6 = V_6 \setminus V_5 = \{5, 10, 15, \ldots, 5(5p^2 - 1)\}\) and \(V_7 = \{5p^2, 10p^2, 15p^2, 20p^2\}\). The cardinality of above vertex sets are \(|V_2| = 20(p - 1), |V_3| = p - 1, |V_4| = 20, |V_5| = p(p - 1), |V_6| = 4p(p - 1)\) and \(|V_7| = 4\). If the pairs of vertex sets \((V_2, V_3), (V_3, V_4), (V_4, V_5), (V_5, V_7)\) and \((V_7, V_6)\) are adjacent then clearly there exists \(K_{20(p-1),(p-1)}, K_{(p-1),20}, K_{20,p(p-1)}, K_{p(p-1),4}, K_{4,4p(p-1)}\) complete bipartite graphs. By the theorem[2,3] shows complete bipartite graph covers some copies of \(C_4\). Then follows sum of all \(K_{20(p-1),(p-1)} + K_{(p-1),20} + K_{20,p(p-1)} + K_{p(p-1),4} + K_{4,4p(p-1)} = \frac{20(p-1)(p-1)}{4} + \frac{20p(p-1)}{4} + \frac{4p(p-1)}{4} + \frac{16p(p-1)}{4} = 15p(p - 1)\). Clearly above cases shows that the graph of \(\Gamma(Z_{52p^2})\) is decomposition into 1 - copie of complete graph \(K_{5p-1}\) with \(5p - 1\) vertices and \(15p(p-1)\) copies of \(C_4\).

\[\blacksquare\]

Theorem 3.4. If \(p\) is any prime number and \(p > 7\), then \(\Gamma(Z_{72p^2})\) is decomposition of 1-copie of complete graph \(K_{7p-1}\) with \(7p - 1\) vertices and \(\frac{63p(p-1)}{2}\) copies of \(C_4\).

Proof. Let \(p\) is any prime number with \(p > 7\) and let \(\Gamma(Z_{72p^2})\) be the non-zero zero divisor graph. The vertex set of \(\Gamma(Z_{72p^2})\) is \(V = \{7, 14, 21, \ldots, 7(7p^2 - 1), p, 2p, 3p, \ldots, p(49p - 1)\}\).
Case (i) Let the vertex subset $V_1 \in V$ where $V_1 = \{7p, 14p, 21p, \ldots, 7p(7p-1)\}$. The cordinality of V_1 is $7p-1$. If any two vertices $v_1, v_2 \in V_1$ are adjacent then clearly the vertex set V_1 is complete graph K_{7p-1} with $7p-1$ vertices.

Case (ii) Consider the vertex subsets are $V_2, V_3, V_4, V_5, V_6, V_7 \in V(\Gamma(Z_{p^2,q^2}))$ where $V_2 = V_2 \setminus V_1 = \{p, 2p, 3p, \ldots, 48p\}$, $V_3 = \{49p, 98p, 147p, \ldots, 49p(p-1)\}$, $V_4 = \{p^2, 2p^2, 3p^2, \ldots, 48p^2\}$, $V_5 = \{49, 98, 147, \ldots, 49(p^2-1)\}$, $V_6 = V_6 \setminus V_5 = \{7, 14, 21, \ldots, 7(p^2-1)\}$ and $V_7 = \{7p^2, 14p^2, 21p^2, 28p^2, 35p^2, 42p^2\}$. The cordinality of above vertex sets are $|V_2| = 42(p-1)$, $|V_3| = p-1$, $|V_4| = 42$, $|V_5| = p(p-1)$, $|V_6| = 6p(p-1)$ and $|V_7| = 6$. If the pairs of vertex sets (V_2, V_3), (V_3, V_4), (V_4, V_5), (V_5, V_7) and (V_7, V_6) are adjacent then clearly there exists $K_{42(p-1), (p-1)}$, $K_{(p-1),42}$, $K_{42,p(p-1)}$, $K_{p(p-1),6}$, $K_{6,6p(p-1)}$ complete bipartite graphs. By the theorem[2.3] shows complete bipartite graph covers some copies of C_4. Then follows sum of all $K_{42(p-1), (p-1)} + K_{(p-1),42} + K_{42,p(p-1)} + K_{p(p-1),2} + K_{6,6p(p-1)} = \frac{42(p-1)(p-1)}{4} + \frac{42(p-1)}{4} + \frac{42p(p-1)}{4} + \frac{6p(p-1)}{4} + \frac{63p(p-1)}{2} = \frac{63p(p-1)}{2}$. Clearly above cases shows that the graph of $\Gamma(Z_{p^2,q^2})$ is decomposition into 1 - copie of complete graph K_{7p-1} with $7p-1$ vertices and $\frac{63p(p-1)}{2}$ copies of C_4. □

Theorem 3.5. If p and q are distinct prime numbers with $p < q$, then $\Gamma(Z_{p^2,q^2})$ is decomposition of 1-copie of complete graph K_{pq-1} with $pq-1$ vertices and $\frac{3pq(p-1)(q-1)}{4}$ copies of C_4.

Proof. Let p and q are distinct prime numbers with $p < q$ and let $\Gamma(Z_{p^2,q^2})$ be the non-zero zero divisor graph. The vertex set of $\Gamma(Z_{p^2,q^2})$ is $V = \{p, 2p, 3p, \ldots, p (pq-1), q, 2q, 3q, \ldots, q(p^2q-1)\}$. Using the above theorem $\Gamma(Z_{p^2,q^2})$ is 1-complete graph and cycle of length 4. Therefore decomposition of zero divisor graph of $\Gamma(Z_{p^2,q^2})$ into 1-copie of complete graph K_{pq-1} with $pq-1$ vertices and $\frac{3pq(p-1)(q-1)}{4}$ copies of C_4. □

References

Department of Mathematics

Vellore Institute of Technology, Vellore

Vellore, Tamil Nadu - 632014, India.

Email address: kuppam.a@vit.ac.in, ravisankar.j@vit.ac.in