ON SOFT FUZZY SOFT TOPOLOGICAL VECTOR SPACES AND DIFFERENTIATIONS

V. VISALAKSHI1 AND T. YOGALAKSHMI

ABSTRACT. Basic properties of soft fuzzy soft topological vector spaces are introduced and discussed. Few results of soft fuzzy soft tangent to 0 and SFS differentiations have been established.

1. INTRODUCTION

1corresponding author

2010 Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. soft fuzzy soft topological vector space, soft fuzzy soft neighbourhoods, soft fuzzy soft tangent to 0, SFS differentiation.
2. Preliminaries

Definition 2.1. [6] Let $P(U)$ be the power set of U and A be the subset of parameter E. Then (F, A) is known as soft set over U where $F : A \to P(U)$.

Definition 2.2. [4] A fuzzy soft set over the universe U is a pair (F, A) where $F : A \to F(U)$ and A is the subset of a set of parameter E.

Definition 2.3. [3] $\delta \subset I^E$ is a fuzzy topology on E iff

(i) For all α constant, $\alpha \in \delta$,

(ii) For all $\mu, \eta \in \delta \Rightarrow \mu \land \eta \in \delta$.

(iii) For all $(\mu_j)_{j \in J} \subset \delta \Rightarrow \sup_{j \in J} \mu_j \in \delta$.

The member in δ is known as open fuzzy set. $\mu \in I^E$ is said to be closed iff μ^c is open.

Definition 2.4. [10] Let X be a set, $\eta \in I^X$ and M is any subset of X. Then (η, M) is said to be a soft fuzzy set in X.

3. On Soft Fuzzy Soft Sets

Throughout the paper $X \neq \phi$, E denote the collection of parameters and $I = [0, 1]$. Also soft fuzzy soft is denoted by SFS.

Definition 3.1. A SFS $\delta_E : X \to I \times P(E)$ with membership $\delta_E(p) = (\delta(p), A)$ where $\delta : X \to I$, A is the member of the collection $P(E)$ of all subsets of E. Moreover its family is represented by $SFS(X, E)$.

Definition 3.2. SFS characteristic function $\chi_A : X \to \{(1, E), (0, \phi)\}$ is defined as

$$\chi_A(p) = \begin{cases}
(1, E), & \text{if } p \in A \subset X; \\
(0, \phi), & \text{otherwise}.
\end{cases}$$

Definition 3.3. Let δ_E be a SFS set. Define

$$p_{\delta_E}(q) = \begin{cases}
(\delta(p), A)(\delta(p) \in [0, 1]), & \text{if } p = q; \\
(0, \phi), & \text{otherwise}.
\end{cases}$$

p_{δ_E} is a sfs point (in short, SFSP) in $SFS(X, E)$.
Definition 3.4. Let $\lambda_E \in SFS(X, E)$ such that the universal SFS set is $\lambda_E(p) = (1, E)$, $\forall p \in X$ and it is represented by $(1, E)^\sim$. The null SFS set is defined as follows $\lambda_E(p) = (0, \phi)$, $\forall p \in X$ and it is represented as $(0, \phi)^\sim$.

Definition 3.5. Let $\delta_E \in SFS(X, E)$ such that $\delta_E(p) = (\delta(p), \mathcal{A})$, then the complement of δ_E is denoted by δ_E^c where $\delta_E^c(p) = (1, E)^\sim - \delta_E(p) = (1 - \delta(p), E\setminus \mathcal{A})$, $\forall p \in X$.

Definition 3.6. Let δ_E and μ_E be any two SFS sets such that $\delta_E(p) = (\delta(p), \mathcal{A})$ and $\mu_E(p) = (\mu(p), \mathcal{B})$. Then

(i) $\delta_E(p) \subseteq \mu_E(p) \Leftrightarrow \delta(p) \leq \mu(p)$, $\forall p \in X$, $\mathcal{A} \subseteq \mathcal{B}$.

(ii) $\delta_E(p) \supseteq \mu_E(p) \Leftrightarrow \delta(p) \geq \mu(p)$, $\forall p \in X$, $\mathcal{A} \supseteq \mathcal{B}$.

(iii) $\delta_E(p) \cap \mu_E(p) = \{\min\{\delta(p), \mu(p)\}, \mathcal{A} \cap \mathcal{B}\}$, $\forall p \in X$.

(iv) $\delta_E(p) \cup \mu_E(p) = \{\max\{\delta(p), \mu(p)\}, \mathcal{A} \cup \mathcal{B}\}$, $\forall p \in X$.

Definition 3.7. Let δ_E and μ_E be any two SFS sets. Then

(i) $\delta_E \subseteq \mu_E \Leftrightarrow \delta_E(p) \subseteq \mu_E(p)$, $\forall p \in X$.

(ii) $\delta_E \supseteq \mu_E \Leftrightarrow \delta_E(p) \supseteq \mu_E(p)$, $\forall p \in X$.

(iii) $\delta_E = \mu_E \Leftrightarrow \delta_E(p) = \mu_E(p)$, $\forall p \in X$.

Definition 3.8. Let $f : X \rightarrow Y$. If $\delta_E \in SFS(Y, E)$, then $f^{-1}(\delta_E)(p) = \delta_E \circ f(p) = \delta_E(f(p))$, $\forall p \in X$.

Definition 3.9. Let $f : X \rightarrow Y$. If $\mu_E \in SFS(X, E)$, then

$$f(\mu_E)(q) = \begin{cases} \cup_{p \in f^{-1}(q)}\mu_E(p), & \text{if } f^{-1}(q) \neq \phi; \\ (0, \phi), & \text{otherwise}. \end{cases}$$

Definition 3.10. A constant membership function is represented by \mathcal{R}_E and if $\mathcal{R}_b(p) = b$ for all $p \in X$, where $0 < b \leq 1$.

Definition 3.11. Let δ_{j_E} be any SFS sets and J be an indexed set. A SFS topology on X is a collection \mathcal{T} of SFS sets satisfying:

(i) $\mathcal{R}_b \in X$ and $\forall A \in P(E), \mathcal{R}_{b_A} \in \mathcal{T}$ where $\mathcal{R}_{b_A} = (\mathcal{R}_b(p), A)$ for all $p \in X$.

(ii) $\delta_{j_E} \in \mathcal{T}$, $j \in J \Rightarrow \psi_{j \in J} \delta_{j_E} \in \mathcal{T}$.

(iii) For any finite J, $\delta_{j_E} \in \mathcal{T}$, $\Rightarrow \bigcap_{j \in J} \delta_{j_E} \in \mathcal{T}$.

Then (X, \mathcal{T}) is said to be SFS topological space, SFSTS. Any member of \mathcal{T} is SFS open set, SFSETS. SFS closed set is the complement of SFS open set and whose collection is denoted by SFSCS.
Remark 3.1. \(\mathcal{T} = \{ \chi_M : \forall M \in \tau \} \cup \{ \mathfrak{R}_{k_A} : \forall k_b \in X \text{ and } \forall A \in P(E) \} \) forms an usual SFS topology.

Proposition 3.1. Let \(f : X \to Y \). If \(\delta_1, \delta_2 \in \mathcal{X} \) be any two SFS sets in \(X \) and \(\mu_1, \mu_2 \in \mathcal{Y} \) be any two SFS sets in \(Y \). Then
(i) \(\delta_1 \subseteq \delta_2 \Rightarrow f(\delta_1) \subseteq f(\delta_2) \).
(ii) \(\mu_1 \subseteq \mu_2 \Rightarrow f^{-1}(\mu_1) \subseteq f^{-1}(\mu_2) \).

Definition 3.12. Let \(\delta_E \in SFS(X, E) \) is said to be a SFS neighbourhood(nghbd) of a SFS point \(p_{\delta_E} \) in \(X \) iff \(\exists a \mu_E \in \mathcal{T} \ni p_{\delta_E} \in \mu_E \in \delta_E \).

Definition 3.13. A system of SFS nghbds of a SFS point \(p_{\delta_E} \) is a set \(\mathcal{B}(p_{\delta_E}) \) of SFS nghbds of \(p_{\delta_E} \) such that for each SFS nghbd \(\delta_E \) of \(p_{\delta_E} \) there is a \(\mu_E \in \mathcal{B}(p_{\delta_E}) \) such that \(\mu_E \subseteq \delta_E \).

Proposition 3.2. Let \(f : (X, \mathcal{T}) \to (Y, \mathcal{S}) \), then we have the equivalence.
(i) \(f \) is SFS continuous.
(ii) \(\delta_E \in SFS(X, E) \) and each SFS nghbd \(\delta_E \) of \(f(\delta_E) \), \(\exists \) a SFS nghbd \(\mu_E \) of \(\delta_E \) such that \(f(\mu_E) \subseteq \delta_E \).

4. On SFS Topological Vector Spaces

Throughout the section \(\mathcal{V} \) is a vectorspace over the field \(K \).

Definition 4.1. Let \(\{\delta_{j}E \} \in SFS(\mathcal{V}, E) \), \(j = 1, 2, 3, \ldots, n \). The sum \(\delta_E = \delta_{1E} + \delta_{2E} + \delta_{3E} + \ldots + \delta_{nE} \) of \(\{\delta_{j}E \} \), is the SFS set having membership, \(\delta_E(p) = \bigcup_{p_1 \ldots p_n = p}(\delta_{1E}(p_1) \cap \delta_{2E}(p_2) \ldots \cap \delta_{nE}(p_n)) \), \(p \in \mathcal{V} \). The scalar product \(\alpha \delta_E \), of \(\alpha \in K \) and \(\delta_E \) is a SFS set in \(\mathcal{V} \) that has \(\alpha \delta_E(p) = \alpha \delta_E(p) \) \(\forall \alpha \neq 0 \) and \(\delta_E \) is a SFS set in \(\mathcal{V} \) that has \(\alpha \delta_E(p) = \alpha \delta_E(p) \) \(\forall \alpha \neq 0 \) or \(\bigcup_{q \in \mathcal{V}} \delta_E(q), p = 0 \).

Proposition 4.1. If \(f : \mathcal{V}_1 \to \mathcal{V}_2 \). Then for all SFS sets \(\delta_E, \mu_E \) in \(\mathcal{V}_1 \) and all scalars \(\alpha, f(\delta_E + \mu_E) = f(\delta_E) + f(\mu_E) \) and \(f(\alpha \delta_E) = \alpha f(\delta_E) \).

Proposition 4.2. If \(\delta_E, \mu_E \in SFS(\mathcal{V}, E) \) and \(\alpha \in K \), \(\alpha \neq 0 \), then \(\alpha \delta_E \in \mu_E \Rightarrow \delta_E \subseteq \mu_E \).

Proposition 4.3. Let \(\delta_{1E}, \delta_{2E}, \ldots, \delta_{nE} \in SFS(\mathcal{V}, E) \) and \(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n \) scalars. Then the following are equivalent.
Proposition 4.4. Let 0 point B nghbds σ SFS nghbd $\mu \delta$ there exists a SFS nghbd σ of A δ. Let $\mu \delta$. Proposition 5.1. If the function f is SFS tangent to $0\delta E$ such that $0\delta E = (\delta(0), \mathcal{A}), (0, \phi) \subset (\delta(0), \mathcal{A}) \subset (1, E)$, \exists a system of SFS nghbds $B(0\delta E) \in \mathcal{V}$ holds.

(i) $\forall \delta E \in B(0\delta E) \exists a \mu E \in B(0\delta E)$ with $\mu E \subset \mu E \in \delta E$.

(ii) $\forall \delta E \in B(0\delta E) \exists a \mu E \in B(0\delta E)$ for which $k\mu E \subset \mu E \forall k \in K, |k| \leq 1$.

(iii) Every $\delta E \in B(0\delta E)$ is SFS balanced.

5. On SFS Differentiations

Definition 5.1. $\sigma : (\mathcal{V}_1, \mathcal{T}_1) \to (\mathcal{V}_2, \mathcal{T}_2)$ is called SFS tangent to 0 if for each SFS nghbd μE of $0\delta E$ where $0\delta E(0) = (\delta(0), \mathcal{A}), (0, \phi) \subset (\delta(0), \mathcal{A}) \subset (1, E)$, in \mathcal{V}_2 there exists a SFS nghbd δE of $0\eta E$ where $0\eta E(0) = (\eta(0), F), (0, \phi) \subset (\eta(0), F) \subset (\delta(0), A)$ in \mathcal{V}_1 such that $\sigma(\delta E) \subset \rho(t)\mu E$ for some function $\rho(t)$.

Proposition 5.1. If the function σ is SFS tangent to 0, then σ is SFS continuous at $0 \in \mathcal{V}_1$.

Proposition 5.2. If σ and η are two functions SFS tangent to 0 then $\sigma + \eta$ is a function SFS tangent to 0.

Proposition 5.3. Let $(\mathcal{V}_1, \mathcal{T}_1), (\mathcal{V}_2, \mathcal{T}_2), (\mathcal{V}_3, \mathcal{T}_3)$ be any three SFS topological vector spaces over K with E as the set of all parameters. Composition of SFS continuous linear map and SFS tangent to zero is SFS tangent to zero.

Definition 5.2. Let $(\mathcal{V}_1, \mathcal{T}_1)$ and $(\mathcal{V}_2, \mathcal{T}_2)$ be any two SFS topological vector spaces, each of them is a SFS \mathcal{T}_1 space. A SFS continuous function $f : \mathcal{V}_1 \to \mathcal{V}_2$ is called a SFS differentiable at $p \in \mathcal{V}_1$ if there is a linear SFS continuous function u on \mathcal{V}_1 satisfies $f(p + q) = f(p) + u(q) + \sigma(q), q \in \mathcal{V}_1$ where σ is SFS tangent to 0 and u is SFS derivative of f at p.

Proposition 5.4. Let $(\mathcal{V}_1, \mathcal{T}_1), (\mathcal{V}_2, \mathcal{T}_2), (\mathcal{V}_3, \mathcal{T}_3)$ be any three SFS topological vector spaces and also SFS \mathcal{T}_1 space. Let f and g be a SFS continuous function on \mathcal{V}_1 and \mathcal{V}_2 respectively. Composition of two SFS differentiable function is SFS differentiable.
Proof. Assume that \(f \) and \(g \) are SFS differentiable. Hence \(f(p + r) - f(p) = f'(p)(r) + \sigma(r), \) \(r \in V_1, \) \(g(q + s) - g(q) = g'(q)(s) + \eta(s), \) \(s \in \mathcal{Y}_2, \) where \(\sigma \) and \(\eta \) are each SFS tangent to \(0. \) Defining \(h = f \circ g, \) after substitution we get,

\[
h(p + r) - h(p) = g'(q)(f'(p)(r)) + g'(q)(\sigma(r)) + \eta(f'(p)(r) + \sigma(r)), \quad r \in \mathcal{Y}_1.
\]

By Proposition 5.3, \(g'(q) \circ \sigma \) is SFS tangent to \(0. \) Consider the function \(\eta \circ (f'(p) + \sigma). \) For every SFS nghbd \(\mu_E \) of \(0_{\mathcal{Y}_E} \) where \(0_{\mathcal{Y}_E}(0) = (\nu(0), F), \) \((0, \phi) \subset (\nu(0), F) \subseteq (1, E) \) in \(\mathcal{Y}_3 \) there is a SFS nghbd \(\delta_E \) of \(0_{\mathcal{Y}_E} \) where \(0_{\mathcal{Y}_E}(0) = (\delta(0), A), \) \((0, \phi) \subset (\delta(0), A) \subseteq (\nu(0), F) \) in \(\mathcal{Y}_2 \) such that \(\eta(\delta_E(z)) \subseteq \rho(t)\mu_E(z), \) \(z \in \mathcal{Y}_3. \)

Given \(\delta_E \) there epists a SFS nghbd \(\delta'_E \) of \(0_{\mathcal{Y}_E} \) such that \(\delta'_E + \delta_E \subseteq \delta_E. \) Suppose that both \(\delta_E \) and \(\delta'_E \) belongs to a system of SFS nghbds \(\mathbb{B}(0_{\mathcal{Y}_E}). \) By the SFS continuity of \(f'(p) \) there is a SFS nghbd \(\gamma_E \) of \(0_{\mathcal{Y}_E} \) where \(0_{\mathcal{Y}_E}(0) = (\beta(0), G), \) \((0, \phi) \subset (\beta(0), G) \subseteq (\delta(0), A) \) in \(\mathcal{Y}_1 \) such that \(f'(p)(\gamma_E)(q) \subseteq \delta'_E(q), \) which implies that \(t^f'(p)(\gamma_E)(q) \subseteq t\delta'_E(q), \) that is \(f'(p)(t(\gamma_E))(q) \subseteq t\delta'_E(q), \) \(q \in \mathcal{Y}_2. \) For everq \(\delta'_E \) there exists a SFS nghbd \(\gamma'_E \) of \(0_{\mathcal{Y}_E} \) in \(\mathcal{Y}_1 \) for which \(\sigma(t\gamma'_E)(q) \subseteq \rho(t)\delta'_E(q) \) and, for \(|\rho(t)|/t| \leq 1, \rho(t)\delta'_E(q) \subseteq t\delta'_E(q), \) \(q \in \mathcal{Y}_2. \) Let \(\gamma_{1_E} = \gamma_E \cap \gamma'_E \) and using Proposition 3.1, we obtain \([\sigma(t\gamma_{1_E}) + f'(p)(t\gamma_{1_E})](q) \subseteq t\delta_E(q), \) which implies that \(\eta(\sigma(t\gamma_{1_E}) + f'(p)(t\gamma_{1_E})) \subseteq \eta(t\delta_E) \subseteq \rho(t)\mu_E, \) that is the function \(\eta \circ (f'(p) + \sigma) \) from \(\mathcal{Y}_1 \) to \(\mathcal{Y}_3 \) is SFS tangent to \(0. \) Thus \(h(p + r) - h(p) = g'(q) \circ f'(p)(r) + \zeta(r), \) \(r \in V_1, \) where \(g'(q) \circ f'(p) \) is linear and SFS continuous, and \(\zeta, \) is SFS tangent to \(0. \)

\[\square\]

REFERENCES

Department of Mathematics
SRM Institute of Science and Technology
Kattankulathur, Chennai, India
Email address: visalakv@srmist.edu.in

Department of Mathematics
School of Advanced Sciences
VIT, Vellore, India
Email address: visalsenthil86@gmail.com