ON FUZZY TOPOLOGICAL BRK-IDEAL

S. SIVAKUMAR, S. KOUSALYA, AND A. VADIVEL

ABSTRACT. In this article, the notion of fuzzy topological BRK-ideal of a BRK-algebra in a topology is introduced. Some theorems and properties of $f_{\tau}BRKI$ are stated and proved. The epimorphic and into homomorphic inverse images of a $f_{\tau}BRKI$ is also studied well. Also, we introduced a Cartesian product of a $f_{\tau}BRKI$ and studied their properties.

1. INTRODUCTION

Imai and Iseki [3] subjected two classes of abstract algebras: BCK-algebras and BCI-algebras in the year of 1996. In 1983, the notion of a BCH-algebra was introduced by Hu and Li [2], which is a generalization of BCK and BCI-algebras. In 2002, a new notion B-algebra was introduced by Neggers and Kim [8]. Also a BF-algebra and BG-algebra was introduced by Walendziak [11] in 2007 and C. B. Kim and H. S. Kim [5], which is a generalization of B-algebra. In 2012, R. K. Bandaru [9] introduced BRK-algebra, which is a generalization of $BCK/BCI/BCH/Q/QS/BM$-algebras [4, 6, 7]. In [1], El-Gendy introduced the notion of fuzzy BRK-ideal of BRK-algebra. S. Sivakumar et al. introduced a topology on BRK-algebra [10] and also studied several concepts. In this present paper we introduce a new notion of $f_{\tau}BRKI$ of a τBRK Alg. Also study some related properties in a $f_{\tau}BRKI$. At last we introduce the Cartesian product of a $f_{\tau}BRKI$ and their properties.

1 corresponding author

2010 Mathematics Subject Classification. 06F35, 03G25, 08A30.
Key words and phrases. $fBRK$ Alg, $f_{\tau}BRK$ Alg, $f_{\tau}BRKI$.

6319
2. Preliminaries

Definition 2.1. [9] A BRK-algebra (briefly, BRK Alg) \((I, \ast, 0)\) is a non-empty set \(I\) with a constant \(0\) and a binary operation \(\ast\) satisfying the following axioms:

\[(BRK_1)\ i_1 \ast 0 = i_1,\]
\[(BRK_2)\ (i_1 \ast i_2) \ast i_1 = 0 \ast i_2\]

for any \(i_1, i_2 \in I\). In a BRK Alg I, \(\le\) a partially ordered relation can be defined by \(i_1 \le i_2\) iff \(i_1 \ast i_2 = 0\).

Definition 2.2. [10] Let \((I, \ast, 0)\) be a BRK Alg and \(\tau\) a topology on \(I\). Then \(I = (I, \ast, 0, \tau)\) is called a topological BRK Alg (briefly, \(\tau\)BRK Alg), if “\(\ast\)” is continuous or equivalently, for any \(m, n \in X\) and \(\forall O\) open set of \(m \ast n\), \(\exists\) two open sets \(M\) and \(N\) respectively, such that \(M \ast N\) is a subset of \(O\).

Definition 2.3. [10] Let \(I\) be a \(\tau\)BRK Alg and \(D\) be a subset of \(I\), then \(D\) is called a \(\tau\)BRK-ideal (briefly, \(\tau\)BRKI) of \(I\), if for any \(i_{11}, i_{22} \in I\):

(i) \(0 \in D\),
(ii) \(0 \ast (i_{11} \ast i_{22}) \in D\) and \(0 \ast i_{22} \in D\) imply \(i_{11}, i_{22} \in I\).

Definition 2.4. [1] Let \(I\) be a set. A function \(\mu_I : I \to [0, 1]\) where \(\mu_I\) a fuzzy set in \(I\).

Definition 2.5. [1] Let \((I, \ast, 0)\) be a BRK Alg. A fuzzy set \(\mu_I\) in \(I\) is called a fuzzy BRK-ideal (briefly, \(f\)BRKI) of \(I\) if

\[(BRKFI_1)\ \mu_I(0) \geq \mu_I(i_1),\]
\[(BRKFI_2)\ \mu_I(0 \ast i_1) \geq \min\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}, \text{ for all } i_1, i_2 \in I.\]

3. Fuzzy \(\tau\)BRK-Ideal

Definition 3.1. Let \((I, \ast, 0, \tau)\) be a \(\tau\)BRK Alg. A fuzzy set \(\mu_I\) in \(I\) is called a fuzzy topological BRK-ideal (briefly, \(f\tau\)BRKI) of \(I\) if

\[(3.1)\ \mu_I(0) \geq \mu_I(i_1),\]
\[(3.2)\ \mu_I(0 \ast i_1) \geq \min\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}, \text{ for all } i_1, i_2 \in I.\]
Definition 3.2. Let $(I, *, 0, \tau)$ be a τBRK Alg. A fuzzy set μ_I in I is called an Anti fuzzy topological τBRK-ideal (briefly, $A f\tau$BRK I) of I if

\begin{align}
\mu_I(0) &\leq \mu_I(i_1), \\
\mu_I(0 \ast i_1) &\leq \max\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}, \text{ for all } i_1, i_2 \in I.
\end{align}

Example 1. Let $(I = \{0, a_1, b_1, c_1\}, *, 0)$ be a BRK Alg defined by

\[
\begin{array}{cccc}
* & 0 & a_1 & b_1 & c_1 \\
0 & 0 & 0 & b_1 & b_1 \\
a_1 & a_1 & 0 & b_1 & b_1 \\
b_1 & b_1 & b_1 & 0 & 0 \\
c_1 & c_1 & c_1 & a_1 & 0 \\
\end{array}
\]

Define a topology $\tau = \{\phi, I, \{b_1\}, \{b_1, c_1\}, \{0, a_1\}, \{0, a_1, b_1\}, \{0, a_1, c_1\}\}$ is a τBRK Alg. Now define $\mu_I : I \rightarrow [0, 1]$ by $\mu_I(0) = K_1, \mu_I(a_1) = \mu_I(b_1) = \mu_I(c_1) = K_2$, where $K_1, K_2 \in [0, 1]$ with $K_1 > K_2$ gives that μ_I is an $f\tau$BRKI.

Proposition 3.1. Let μ_I be an $f\tau$BRKI of τBRK Alg I and if $i_1 \geq i_2$, then $\mu_I(0 \ast i_1) \geq \mu_I(0 \ast i_2)$, $\forall i_1, i_2 \in I$.

Proof. Let μ_I be an $f\tau$BRKI of a τBRK Alg I. For any $i_1, i_2 \in I$ such that $i_1 \geq i_2$. Since $i_1 \geq i_2$, then $i_1 \ast i_2 = 0$.

\[
\mu_I(0 \ast i_1) \geq \min\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}
\]

\[
= \min\{\mu_I(0 \ast 0), \mu_I(0 \ast i_2)\}
\]

\[
= \min\{\mu_I(0), \mu_I(0 \ast i_2)\}
\]

\[
= \mu_I(0 \ast i_2).
\]

Hence $\mu_I(0 \ast i_1) \geq \mu_I(0 \ast i_2)$. \square

Theorem 3.1. A fuzzy subset μ_I of a τBRK Alg I is a $A f\tau$BRK I of I iff μ_I^c is an $f\tau$BRKI of I.

Proof. Let μ_I be a $A f\tau$BRK I of a τBRK Alg I, and let $i_1, i_2 \in I$. Then Since $\mu_I(0) \leq \mu_I(i_1)$ then

\[
1 - \mu_I(0) \geq 1 - \mu_I(i_1)
\]

\[
(3.5)
\]

\[
\mu_I^c(0) \geq \mu_I^c(i_1).
\]

The end of the page.
Further,
\[
\mu_I(0 \ast i_1) \leq \max\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}
\]
\[
1 - \mu_I(0 \ast i_1) \geq 1 - \max\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}
\]
\[
\mu_I^c(0 \ast i_1) \geq \min\{1 - \mu_I(0 \ast (i_1 \ast i_2)), 1 - \mu_I(0 \ast i_2)\}
\]
(3.6)
\[
\mu_I^c(0 \ast i_1) \geq \min\{\mu_I^c(0 \ast (i_1 \ast i_2)), \mu_I^c(0 \ast i_2)\}
\]
So, \(\mu_I^c\) is an \(f \tau BRKI\) of \(I\).

Now let \(\mu_I^c\) is an \(f \tau BRKI\) of a \(\tau BRK\) Alg \(I\), and let \(i_3, i_4 \in I\). Then Since \(\mu_I^c(0) \geq \mu_I^c(i_3)\) then
\[
1 - \mu_I^c(0) \leq 1 - \mu_I^c(i_3)
\]
(3.7)
\[
\mu_I(0) \leq \mu_I(i_3).
\]
So,
\[
\mu_I^c(0 \ast i_3) \geq \min\{\mu_I^c(0 \ast (i_3 \ast i_4)), \mu_I^c(0 \ast i_4)\}
\]
\[
1 - \mu_I^c(0 \ast i_3) \leq 1 - \min\{\mu_I^c(0 \ast (i_3 \ast i_4)), \mu_I^c(0 \ast i_4)\}
\]
\[
\mu_I(0 \ast i_3) \leq \max\{1 - \mu_I^c(0 \ast (i_3 \ast i_4)), 1 - \mu_I^c(0 \ast i_4)\}
\]
(3.8)
\[
\mu_I(0 \ast i_3) \leq \max\{\mu_I(0 \ast (i_3 \ast i_4)), \mu_I(0 \ast i_4)\}
\]
Therefore, \(\mu_I\) is a \(Af \tau BRK I\) of a \(\tau BRK\) Alg \(I\). \(\square\)

Theorem 3.2. Let \(\mu_I\) be an \(f \tau BRKI\) of \(\tau BRK\) Alg \(I\). Then \(\mu_I = \{i_1 \in I | \mu_I(0 \ast i_1) = \mu_I(0)\}\) is a \(\tau BRK I\).

Proof. Clearly \(0 \in I_{\mu_I}\). Let \(i_1, i_2 \in I_{\mu_I}\) be such that \((0 \ast (i_1 \ast i_2)) \in I_{\mu_I}\) and \(0 \ast i_2 \in I_{\mu_I}\). Then \(\mu_I(0 \ast (i_1 \ast i_2)) = \mu_I(0 \ast i_2) = \mu_I(0)\). It follows that
\[
\mu_I(0 \ast i_1) \geq \min\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}
\]
\[
\mu_I(0 \ast i_1) \geq \min\{\mu_I(0), \mu_I(0)\}
\]
\[
\mu_I(0 \ast i_1) \geq \mu_I(0).
\]
So, by combining with Definition 3.1, we get that \(\mu_I(0 \ast i_1) = \mu_I(0)\) and hence \(0 \ast i_1 \in I_{\mu_I}\). \(\square\)
Definition 3.3. Let \((I, \ast, 0, \tau)\) and \((J, \ast', 0', \tau)\) be \(\tau\)BRK Alg's. A mapping \(h : I \rightarrow J\) is said to be a homomorphism of a \(\tau\)BRK Alg if \(h(i_1 \ast i_2) = h(i_1) \ast' h(i_2)\), \(\forall i_1, i_2 \in I\).

Definition 3.4. Let a map \(h : I \rightarrow J\). If \(\mu_I^*\) is a fuzzy subset of \(J\), then the fuzzy subset defined by \(\mu_I^*(h(i_1)) = \mu_I(i_1) \forall i_1 \in I\) is said to be the inverse image of \(\mu_I^*\) under \(h\).

Theorem 3.3. The epimorphic image of an \(f\tau\)BRKI is also an \(f\tau\)BRKI.

Proof. Let \(h : I \rightarrow J\) be an epimorphism of \(\tau\)BRK Alg’s \((I, \ast, 0, \tau)\) and \((J, \ast', 0', \tau)\). Consider that \(\beta\) is an \(f\tau\)BRKI of \(I\) and \(\mu_I\) is the image of \(\beta\) under \(h\). Let \(j_1 \in J\). Then \(\exists i_1 \in I\) such that \(h(i_1) = j_1\). Then

\[\mu_I(j_1) = \mu_I(h(i_1)) = \beta(i_1) \leq \beta(0) = \mu_I(h(0)) = \mu_I(0').\]

Let \(i_1', j_1' \in J\). Then \(\exists i_1, j_1 \in I \ni h(i_1) = i_1' \& h(j_1) = j_1'\). It follows that

\[\mu_I(0' \ast' i_1') = \mu_I(h(0 \ast i_1)) = \beta(0 \ast i_1) \leq \beta(0 \ast (i_1 \ast j_1)) = \min\{\beta(0 \ast (i_1 \ast j_1)), \beta(0 \ast j_1)\} = \min\{\mu_I(h(0 \ast (i_1 \ast j_1))), \mu_I(h(0 \ast j_1))\} = \min\{\mu_I(h(0) \ast' (h(i_1) \ast' h(j_1))), \mu_I(h(0) \ast' h(j_1))\} = \min\{\mu_I(0' \ast' (i_1' \ast' j_1')), \mu_I(0' \ast' j_1')\}.

Hence \(\mu_I\) is an \(f\tau\)BRKI of \(J\). \(\square\)

Theorem 3.4. The into homomorphic inverse image of an \(f\tau\)BRKI is also an \(f\tau\)BRKI.

Proof. Let \(h : I \rightarrow J\) be an into homomorphism of \(\tau\)BRK Alg’s \((I, \ast, 0, \tau)\), \((J, \ast', 0', \tau)\). And \(\mu_I^*\) is an \(f\tau\)BRKI of \(J\) and \(\mu_I\) is the image of \(\mu_I^*\) under \(h\). By definition 3.4 we find that \(\mu_I^*(h(i_1)) = \mu_I(i_1)\), for all \(i_1 \in I\), since \(\mu_I^*\) is an \(f\tau\)BRKI of \(J\), then \(\mu_I^*(0') \geq \mu_I^*(h(i_1)) \forall i_1 \in I\).

So that (3.7) holds, since \(\mu_I(0) = \mu_I^*(h(0)) = \mu_I^*(0') \geq \mu_I^*(h(i_1)) = \mu_I(i_1)\). For all \(i_1, i_2 \in I\), we have

\[\mu_I(0 \ast i_1) = \mu_I^*(h(0 \ast i_1)) = \mu_I^*(h(0) \ast' h(i_1)) \geq \min\{\mu_I^*(h(0) \ast' h(i_1)), \mu_I^*(h(0) \ast' h(i_2))\} = \min\{\mu_I^*(h(0 \ast (i_1 \ast i_2))), \mu_I^*(h(0 \ast i_2))\} = \min\{\mu_I(0 \ast (i_1 \ast i_2)), \mu_I(0 \ast i_2)\}.
\]
Hence \(\mu_I(0 \star i_1) = \mu_I^*(h(0 \star i_1)) = (\mu_I^* \circ h)(0 \star i_1) \) is an \(f\tau BRKI \) of \(I \). The proof is complete. \ \ \ \Box

4. Cartesian Product of \(f\tau BRK \)-Ideal

Definition 4.1. A \(\mu_I \) be fuzzy relation on any set \(I \) is a fuzzy subset \(\mu_I : I \times I \to [0, 1] \).

Definition 4.2. Let \(\mu_I \) and \(\mu_I^* \) be fuzzy subsets of a set \(I \). The Cartesian product of \(\mu_I \) and \(\mu_I^* \) is defined by \((\mu_I \times \mu_I^*)(i_1, j_1) = \min\{\mu_I(i_1), \mu_I^*(j_1)\} \forall i_1, j_1 \in I \).

Corollary 4.1. Let \((I, *, 0, \tau)\) and \((J, \star, 0', \tau)\) be \(\tau BRK \) Alg's, we define \(\star \) on \(I \times J \) by for every \((i_3, i_4), (j_3, j_4) \in I \times J\), \((i_3, i_4) \star (j_3, j_4) = (i_3 \star j_3, i_4 \star j_4)\) then \((I \times J, \star, (0, 0'), \tau)\) is a \(\tau BRK \) Alg.

Proof. Let \((I, *, 0, \tau)\) and \((J, \star, 0', \tau)\) be \(\tau BRK \) Alg's (see Definition 3.1). For all \((i_3, i_4), (j_3, j_4) \in I \times J\), then

\[
(i) - (i_3, i_4) \star (0, 0') = (i_3 \star 0, i_4 \star 0') = (i_3, i_4)
\]

\[
(ii) - ((i_3, i_4) \star (j_3, j_4)) \star (i_3, i_4) = (i_3 \star j_3, i_4 \star j_4) \star (i_3, i_4)
\]

\[
= ((i_3 \star j_3) \star i_3, (i_4 \star j_4) \star i_4) = (0 \star j_3, 0' \star j_4).
\]

So, \((I \times J, \star, (0, 0'), \tau)\) is a \(\tau BRK \) Alg. \ \ \ \Box

Theorem 4.1. If \(\mu_I \) and \(\mu_I' \) are \(f\tau BRKI \)'s of \(\tau BRK \) Alg's \(I \), then \(\mu_I \times \mu_I' \) is an \(f\tau BRKI \) of \((I \times I, \star, (0, 0'), \tau)\).

Proof. Let \(i_3, i_3' \in I \times I \). Then

\[
(\mu_I \times \mu_I')(0, 0') = \min\{\mu_I(0), \mu_I'(0')\} \geq \min\{\mu_I(i_3), \mu_I'(i_3')\} = (\mu_I \times \mu_I')(i_3, i_3').
\]

For any \((i_3, i_3'), (i_4, i_4') \in I \times I\) we have

\[
(\mu_I \times \mu_I')(0 \star i_3, 0' \star i_3') = \min\{\mu_I(0 \star i_3), \mu_I'(0' \star i_3')\}
\]

\[
= \min\{\min\{\mu_I(0 \star i_3), \mu_I(0 \star i_3')\}, \min\{\mu_I'(0' \star i_3), \mu_I'(0' \star i_3')\}\}
\]

\[
= \min\{\min\{\mu_I(0 \star i_3), \mu_I'(0' \star i_3')\}, \min\{\mu_I(0 \star i_3), \mu_I'(0' \star i_3')\}\}
\]

\[
= \min\{\mu_I(0 \star i_3), \mu_I'(0' \star i_3')\} = (\mu_I \times \beta)((0, 0') \star ((i_3, i_3') \star (i_4, i_4'))), (\mu_I \times \mu_I')((0, 0') \star (i_4, i_4'))\}
\]

Hence \(\mu_I \times \mu_I' \) is a \(f\tau BRKI \) of \((I \times I, \star, (0, 0'), \tau)\). \ \ \ \Box
Definition 4.3. If \(\zeta \) is a fuzzy subset of a set \(I \), the strongest fuzzy relation on \(I \) that is a fuzzy relation on \(\zeta \) is \(\mu_\zeta \) given by \(\mu_\zeta(i_1, i_2) = \min\{\zeta(i_1), \zeta(i_2)\} \) \(\forall i_1, i_2 \in I \).

Proposition 4.1. For a fuzzy subset \(\zeta \) of a \(\tau\text{BRK Alg} \) \(I \), let \(\mu_\zeta \) be the strongest fuzzy relation on \(I \). If \(\mu_\zeta \) is an \(f\tau\text{BRKI} \) of \((I \times I; \star, (0, 0)) \), then \(\zeta(0) \geq \zeta(i_1) \) for all \(i_1 \in I \).

Proof. Since \(\mu_\zeta \) is a \(f\tau\text{BRKI} \) of \(I \times I \), it follows from (3.5) that \(\mu_\zeta(0, 0) \geq \mu_\zeta(i_1, i_1) \). So that \(\mu_\zeta(0, 0) = \min\{\zeta(0), \zeta(0)\} \geq \max\{\zeta(i_1), \zeta(i_1)\} = \mu_\zeta(i_1, i_1) \). This implies that \(\zeta(0) \geq \zeta(i_1) \). \(\Box \)

Theorem 4.2. Let \(\zeta \) be a fuzzy subset of a \(\tau\text{BRK Alg} \) \(I \) and \(\mu_\zeta \) be the strongest fuzzy relation on \(I \). If \(\zeta \) is a \(f\tau\text{BRKI} \) of \(I \) then \(\mu_\zeta \) is a \(f\tau\text{BRKI} \) of \((I \times I; \star, (0, 0'), \tau) \).

Proof. Suppose that, \(\zeta \) is a fuzzy subset of a \(f\tau\text{BRKI} \) \(I \) and \(\mu_\zeta \) is the strongest fuzzy relation on \(I \). Then \(\mu_\zeta(0, 0') = \min\{\zeta(0), \zeta(0')\} \geq \min\{\zeta(i_1), \beta(j_1)\} = \mu_\zeta(i_1, j_1) \forall (i_1, j_1) \in I \times I \).

For all \((i_1, i_1'), (j_1, j_1') \in I \times I \), we get that
\[
\mu_\zeta((0, 0') \star (i_1, i_1')) = \mu_\zeta(0 \star i_1, 0' \star i_1') = \min\{\beta(0 \star i_1), \beta(0' \star i_1')\} \\
\geq \min\{\min\{\beta(0 \star (i_1 \star j_1)), \beta(0 \star j_1)\}, \min\{\zeta(0' \star (i_1' \star j_1')), \zeta(0' \star j_1')\}\} \\
= \min\{\min\{\zeta(0 \star (i_1 \star j_1)), \beta(0' \star (i_1' \star j_1'))\}, \min\{\beta(0 \star j_1), \beta(0' \star j_1')\}\} \\
= \min\{\mu_\zeta(0 \star (i_1 \star j_1), 0' \star (i_1' \star j_1')), \mu_\zeta(0 \star j_1, 0' \star j_1')\} \\
= \min\{\mu_\zeta((0, 0') \star ((i_1, i_1') \star (j_1, j_1'))), \mu_\zeta((0, 0') \star (j_1, j_1'))\}.
\]
Hence \(\mu_\zeta \) is a \(f\tau\text{BRKI} \) of \((I \times I; \star, (0, 0'), \tau) \). \(\Box \)

5. Conclusion

In this paper, the \(f\tau\text{BRKI} \) concept of \(\tau\text{BRK Alg} \) was introduced and studied their properties. The epimorphic and into homomorphic inverse images of a \(f\tau\text{BRKI} \) are also discussed and studied well. The \(f\tau\text{BRKI} \) of a cartesian product was also discussed in this work.

Acknowledgment

The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.
REFERENCES

DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE, CHIDAMBARAM, TAMIL NADU - 608 102, INDIA.
Email address: ssk.2012@yahoo.co.in

DEPARTMENT OF MATHEMATICS, VIDYAA VIKAS COLLEGE OF ENGINEERING AND TECHNOLOGY, TIRUCHENGODE, TAMIL NADU - 637 214, INDIA.
Email address: kousalyavaasan@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR - 639 005; DEPARTMENT OF MATHEMATICS, ANNAMALAI UNIVERSITY, ANNAMALAI NAGAR - 608 002, INDIA.
Email address: avmaths@gmail.com