BIPOLAR VAGUE COSETS

U. VENKATA KALYANI¹ AND T. ESWARLAL²

ABSTRACT. In this paper we introduce and study the concepts of bipolar vague cosets (BVCs) of a group, symmetric invariant -normal bipolar vague groups (BVGs).

1. INTRODUCTION

The fuzzy sets was popularized first by Zadeh in 1965. Suppose \(Z \) is any non-empty set. A mapping \(\gamma : Z \to [0, 1] \) is known as a Fuzzy subset of \(Z \). We have many extensions in the fuzzy set theory, such as intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets etc. The fuzzy set theory govern membership of an element \(z \) only, it means the indication of \(z \) affinity to \(\gamma \). It does not take care of the indication against \(z \) affinity to \(\gamma \). To oppose this trouble Gau and Buehrer brought in the notion of vague set theory. According to them, a vague set \(\mathcal{A} \) of a non-empty set \(Z \) can be identified by functions \((t_{\mathcal{A}}, f_{\mathcal{A}}) \) where \(t_{\mathcal{A}} \) and \(f_{\mathcal{A}} \) are functions from \(Z \) to \([0,1]\) such that \(t_{\mathcal{A}}(x) + f_{\mathcal{A}}(x) \leq 1 \) for all \(z \in Z \) where \(t_{\mathcal{A}} \) is called the truth function (or) membership function, which gives indication of how much an element \(z \) belong to \(\mathcal{A} \) and \(f_{\mathcal{A}} \) is called the false function (or) non-membership function, which gives indication of how much an element \(z \) does not belong to \(\mathcal{A} \). These approaches are being administered in various fields like decision making, fuzzy control etc. In such a way the ideology of vague sets

¹corresponding author
2010 Mathematics Subject Classification. 16Y60, 16Y99, 03E72.
Key words and phrases. Vague set, Vague Group, Vague Left Coset, Vague Right Coset, Bipolar vague set, bipolar vague group.

6777
is a generalization of Fuzzy set theory. Ranjit Biswas [4] proposed the theory of vague groups and authors like Eswarlal, Ramakrishna, Bhargavi, Nageswara Rao, Ragamayi introduced and studied Boolean vague sets, Vague groups, vague gamma semi rings, translate operators on Vague groups and vague gamma near rings respectively. [1, 3, 7–10] and extended the study of vague algebra and its applications. Lee [2] popularized the Bipolar - valued fuzzy sets (BVFS), which are an extension of fuzzy sets. Here the membership degree of these bipolar valued fuzzy sets (BVFS) range is extended from the interval [0,1] to [-1,1]. The degree of satisfaction to the propety corresponding to a fuzzy set and its counter property are represented by membership degrees of BVFS. This lead to a spirited field of research in distinct disciplines like algebraic structures, decision making, graph theory, medical science, machine theory etc. Venkata kalyani U and Eswarlal T [6] have introduced and studied the homomorphism and anti-homomorphism on Bipolar Vague Normal groups (BVNGs).

In this paper we introduced bipolar vague cosets (BVC) and studied their properties. These concepts are used in the development of some important results and theorems about bipolar vague groups (BVGs) and bipolar vague normal groups (BVNGs).

2. Preliminaries

In this phase we recall a few number of the important standards and definitions, which are probably vital for this paper.

Definition 2.1. [4] A mapping \(\gamma : Z \to [0,1] \) is referred to as a fuzzy subset of non empty set \(Z \).

Definition 2.2. [4]: A vague set \(A \) in the universe of discourse \(Z \) is a pair \((t_A, f_A)\), where \(t_A : Z \to [0,1], f_A : Z \to [0,1] \) are mappings such that \(t_A(z) + f_A(z) \leq 1 \), \(\forall z \in Z \). The functions \(t_A \) and \(f_A \) are referred as true membership function and false membership function respectively.

Definition 2.3. [4]: Let \((K, \ast)\) be a group. A vague set(VS) \(A \) of \(K \) is termed as a vague group(VG) of \(K \) if for any \(g, h \) in \(K \), if:
\[V_A(g \ast h) \geq \min\{V_A(g), V_A(h)\} \text{ and } V_A(g^{-1}) \geq V_A(g) \text{ i.e.} \]
\[(i) \quad t_A(g \ast h) \geq \min\{(t_A(g), t_A(h))\} \text{ and } f_A(g \ast h) \leq \max\{f_A(g); f_A(h)\}; \]
Definition 2.4. ([1, 4]): Consider a group \((K,) \) and \(A \) be a vague group(VG) of \(K \). A vague left coset(VLC) of \(A \), denoted by \(aA \), for any \(a \in K \), and defined by \(V_{aA}(z) = V_A(a^{-1}(z)) \) i.e \(t_{aA}(z) = t_A(a^{-1}(z)) \) and \(f_{aA}(z) = f_A(a^{-1}(z)) \).

Definition 2.5. ([1, 4]): Consider a group \((K,) \) and \(A \) be a vague group(VG) of \(K \). A vague right coset(VRC) of \(A \) is denoted by \(Aa \) and for any \(a \) in \(K \) defined by \(V_{Aa}(z) = V_A((z)a^{-1}) \) i.e \(t_{Aa}(z) = t_A((z)a^{-1}) \) and \(f_{Aa}(z) = f_A((z)a^{-1}) \).

Definition 2.6. ([2]): Consider a universal set \(Z \) and \(A \) be a set over \(Z \) that is defined by a positive membership function, \(\mu_A^+ : Z \to [0, 1] \) and a negative membership function, \(\mu_A^- : Z \to [-1, 0] \). Then \(A \) is called a bipolar-valued fuzzy set over \(Z \), and can be written in the form \(A = \{ z : \mu_A^+(z), \mu_A^-(z) >: z \in Z \} \).

Definition 2.7. ([2]): Consider a group \(K \). A bipolar valued fuzzy subset (BVFS) \(B \) of \(K \) is referred as a bipolar valued fuzzy subgroup (BVFSG) of \(K \), if for all \(g, h \) in \(K \)

\[
\begin{align*}
(i) \quad B^+(gh) & \geq \min\{B^+(g), B^+(h)\} \\
(ii) \quad B^+(g^{-1}) & \geq B^+(g) \\
(iii) \quad B^-(gh) & \leq \max\{B^-(g), B^-(h)\} \\
(iv) \quad B^-(g^{-1}) & \leq B^-(g)
\end{align*}
\]

Definition 2.8. ([2, 5]) Let \(B \) be an object over universe of discourse \(Z \). Then \(B \) is called a bipolar vague set(BVS) which is of the form:

\[
B = \{ z : [t_B^+(z), 1 - f_B^+(z)], [t_B^-(z), 1 - f_B^-(z)] >: z \in Z \},
\]

where \(0 \leq t_B^+(z) + f_B^+(z) \leq 1 \) and \(-1 \leq t_B^-(z) + f_B^-(z) \leq 0 \). Here \(V_B^+ = [t_B^+, 1 - f_B^+] \) and \(V_B^- = [-1 - f_B^-, t_B^-] \) will be used to denote a bipolar vague set.

Definition 2.9. ([2, 5]) Let \(A \) be a bipolar vague set (BVS) in universe of discourse \(Z \). Then \(A \) is called a bipolar valued vague group (BVG) of \(Z \) if:

\[
\begin{align*}
(i) \quad V_B^+(gh) & \geq \min\{V_B^+(g), V_B^+(h)\} \quad \text{and} \quad V_B^+(g^{-1}) \geq V_B^+(g) \quad \text{and} \\
V_B^-((gh)) & \leq \max\{V_B^-(g), V_B^-(h)\} \quad \text{and} \quad V_B^-(g^{-1}) \leq V_B^-(g), \\
\text{i.e.,} \quad t_B^+(gh) & \geq \min\{t_B^+(g), t_B^+(h)\} \quad \text{and} \quad 1 - f_B^+(gh) \geq \min\{1 - f_B^+(g); 1 - f_B^+(h)\}. \\
(ii) \quad t_B^+(g^{-1}) & \geq t_B^+(g) \quad \text{and} \quad 1 - f_B^+(g^{-1}) \geq 1 - f_B^+(g).
\end{align*}
\]
(iii) \(t_B(gh) \leq \max\{t_B(g), t_B(h)\} \) and \(-1 - f_B(gh) \leq \max\{-1 - f_B(g); -1 - f_B(h)\} \).

(iv) \(t_B^{-1}(g^{-1}) \leq t_B^{-1}(g) \) and \(-1 - f_B^{-1}(g^{-1}) \leq -1 - f_B^{-1}(g) \).

Example 1. ([2,5]) Let \(G = \{1, \omega, \omega^2\} \) where \(\omega \) is the cubic root of unity with the binary operation defined as below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(\omega)</th>
<th>(\omega^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(\omega)</td>
<td>(\omega^2)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(\omega)</td>
<td>(\omega^2)</td>
<td>1</td>
</tr>
<tr>
<td>(\omega^2)</td>
<td>(\omega^2)</td>
<td>1</td>
<td>(\omega)</td>
</tr>
</tbody>
</table>

Let \(A = (Z; V_A^+, V_A^-) \) be a bipolar vague set(BVS) in \(Z \) as defined below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(\omega)</th>
<th>(\omega^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_A^+)</td>
<td>[0.9,0.9]</td>
<td>[0.6,0.8]</td>
<td>[0.6,0.8]</td>
</tr>
<tr>
<td>(V_A^-)</td>
<td>[-0.4,-0.1]</td>
<td>[-0.4,-0.1]</td>
<td>[-0.4,-0.1]</td>
</tr>
</tbody>
</table>

Then \(A = (Z; V_A^+, V_A^-) \) is a bipolar vague group(BVG) of the group \(Z \).

Definition 2.10. ([2,5]) Consider a group and \(B \) be a bipolar vague set (BVS) on \(Z \). Then \(B \) is known as a bipolar vague normal subgroup (BVNSG) over \(Z \) if \(V_B^+(ghg^{-1}) \geq V_B^+(h) \) and \(V_B^-(ghg^{-1}) \leq V_B^-(h) \) for all \(g, h \in Z \). The set of all bipolar vague normal subgroups on \(Z \) are denoted by BVNS\((Z) \).

Remark 2.1. ([2,5]) Let \(B \) be a bipolar vague set(BVS) on group \(Z \). Then \(B \) is called a bipolar vague normal subgroup over \(Z \) (BVNS), if \(B(ghg^{-1}) = B(h) \) for all \(g, h \in Z \).

3. Bipolar Vague Cosets

In this section we introduced bipolar vague cosets(BVCs) and studied their properties.

Definition 3.1. Let \(A \) be a bipolar vague group(BVG) over group \((G, \cdot) \). For any \(a \in G \), a bipolar vague left coset of \(A \) is denoted by \((aA)^L \) and \((aA)^L =< \)
aA^+, aA^- > and defined by V^+_a(x) = V^+_A(a^{-1}x), i.e., t^+_a(x) = t^+_A(a^{-1}x); f^+_a(x) = f^+_A(a^{-1}x) and V^-_a(x) = V^-_A(a^{-1}x)i.e t^-_a(x) = t^-_A(a^{-1}x)f^-_a(x) = f^-_A(a^{-1}x)

clearly bipolar vague left coset is a bipolar vague set.

Definition 3.2. Let A be a bipolar vague group over group (G,·). For any a ∈ G, a bipolar vague right coset of A is denoted by (Aa)^R and (Aa)^R =< A^+a, A^-a > and defined by V^+_aa(x) = V^+_A(xa^{-1}), i.e., t^+_aa(x) = t^+_A(xa^{-1}); f^+_aa(x) = f^+_A(xa^{-1}) and V^-_aa(x) = V^-_A(xa^{-1})i.e t^-_aa(x) = t^-_A(xa^{-1}); f^-_aa(x) = f^-_A(xa^{-1}) clearly bipolar vague right coset is a bipolar vague set.

Example 2. Let G={1,ω,ω^2} where ω is the cubic root of unity with the binary operation defined as below.

<table>
<thead>
<tr>
<th>Table 3. composition table of cube roots of unity</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>ω</td>
</tr>
<tr>
<td>ω^2</td>
</tr>
</tbody>
</table>

Let A = (Z; V^+_A, V^-_A) be a bipolar vague set(BVS) in Z as defined below:

Table 4. Bipolar vague set in Z

<table>
<thead>
<tr>
<th>V^+_A</th>
<th>1</th>
<th>ω</th>
<th>ω^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9,0.9</td>
<td>0.6,0.8</td>
<td>0.6,0.8</td>
<td></td>
</tr>
<tr>
<td>V^-_A</td>
<td>-0.4,-0.1</td>
<td>-0.4,-0.1</td>
<td>-0.4,-0.1</td>
</tr>
</tbody>
</table>

\[
t^+_A(1) = t^+_A(1^{-1}(1)) = t^+_A(1.1) = t^+_A(1) = 0.9;
\]
\[
f^+_A(1) = f^+_A(1^{-1}(1)) = f^+_A(1.1) = f^+_A(1) = 0.1
\]
\[
t^+_A(ω) = t^+_A(1^{-1}ω) = t^+_A(1ω) = t^+_A(ω) = 0.6;
\]
\[
f^+_A(ω) = f^+_A(1^{-1}ω) = f^+_A(1ω) = f^+_A(ω) = 0.2
\]
\[
t^+_A(ω^2) = t^+_A((1)^{-1}(ω^2)) = t^+_A(ω^2) = 0.6;
\]
\[
f^+_A(ω^2) = f^+_A((1)^{-1}(ω^2)) = f^+_A(ω^2) = 0.2
\]

Thus
Thus

\[1A^+ = \{(1, 0.9, 0.1), (\omega, 0.6, 0.2), (\omega^2, 0.6, 0.2)\}\]

\[t_{1A}^+ (1) = t_{1A}^+ (1^{-1}) = t_{1A}^+ (1.1) = t_{1A}^+ (1) = -0.1;\]
\[f_{1A}^+ (1) = f_{1A}^+ (1^{-1}) = f_{1A}^+ (1.1) = f_{1A}^+ (1) = -0.6\]
\[t_{1A}^- (\omega) = t_{1A}^- (1^{-1} \omega) = t_{1A}^- (1 \omega) = 0.1;\]
\[f_{1A}^- (\omega) = f_{1A}^- (1^{-1} \omega) = f_{1A}^- (1 \omega) = 0.6\]
\[t_{1A}^- (\omega^2) = t_{1A}^- ((1^{-1} \omega^2)) = t_{1A}^- (\omega^2) = 0.1;\]
\[f_{1A}^- (1) = f_{1A}^- ((1^{-1} \omega^2)) = f_{1A}^- (\omega^2) = 0.6\]

Thus

\[1A^- = \{(1, -0.1, -0.6), (\omega, -0.1, -0.6), (\omega^2, -0.1, -0.6)\}\]

\[t_{1A}^- (1) = t_{1A}^- (1^{-1}) = t_{1A}^- (1.1) = t_{1A}^- (1) = 0.9;\]
\[f_{1A}^- (1) = f_{1A}^- (1^{-1}) = f_{1A}^- (1.1) = f_{1A}^- (1) = 0.1\]
\[t_{1A}^- (\omega) = t_{1A}^- (1^{-1} \omega) = t_{1A}^- (1 \omega) = 0.6;\]
\[f_{1A}^- (\omega) = f_{1A}^- (1^{-1} \omega) = f_{1A}^- (1 \omega) = 0.2\]
\[t_{1A}^- (\omega^2) = t_{1A}^- ((1^{-1} \omega^2)) = t_{1A}^- (\omega^2) = 0.6;\]
\[f_{1A}^- (1) = f_{1A}^- ((1^{-1} \omega^2)) = f_{1A}^- (\omega^2) = 0.2\]

Thus

\[A^+ 1 = \{(1, 0.9, 0.1), (\omega, 0.6, 0.2), (\omega^2, 0.6, 0.2)\}\]

\[t_{A^1} (1) = t_{A^1} (1^{-1}) = t_{A^1} (1.1) = t_{A^1} (1) = -0.1;\]
\[f_{A^1} (1) = f_{A^1} (1^{-1}) = f_{A^1} (1.1) = f_{A^1} (1) = -0.6\]
\[t_{A^1} (\omega) = t_{A^1} (1^{-1} \omega) = t_{A^1} (1 \omega) = -0.1;\]
\[f_{A^1} (\omega) = f_{A^1} (1^{-1} \omega) = f_{A^1} (1 \omega) = -0.6\]
\[t_{A^1} (\omega^2) = t_{A^1} ((1^{-1} \omega^2)) = t_{A^1} (\omega^2) = -0.1;\]
\[f_{A^1} (1) = f_{A^1} ((1^{-1} \omega^2)) = f_{A^1} (\omega^2) = -0.6\]

Thus

\[A^- 1 = \{(1, -0.1, -0.6), (\omega, -0.1, -0.6), (\omega^2, -0.1, -0.6)\}\]

Definition 3.3. A bipolar vague group \(A\) of group \(G\) is said to be:
Proof. (i) bipolar vague symmetric if $V^+_A(x^{-1}) = V^+_A(x)$ and $V^-_A(x^{-1}) = V^-_A(x) \forall x \in G$, i.e., $t^+_A(x^{-1}) = t^+_A(x)$, $f^+_A(x^{-1}) = f^+_A(x)$ and $t^-_A(x) = t^-_A(x)$, $f^-_A(x^{-1}) = f^-_A(x)$.

(ii) bipolar vague invariant if $V^+_A(xy) = V^+_A(yx)$ and $V^-_A(xy) = V^-_A(yx) \forall x, y \in G$, i.e., $t^+_A(xy) = t^+_A(yx)$, $f^+_A(xy) = f^+_A(yx)$ and $t^-_A(xy) = t^-_A(yx)$, $f^-_A(xy) = f^-_A(yx) \forall x, y \in G$.

(iii) Bipolar Vague normal if A is both bipolar vague symmetry and bipolar vague invariant.

Theorem 3.1. Let A be a bipolar vague group of a group G, hence $\forall x, y \in G$:

(i) $aA^+ = bA^+ \iff A^+ a^{-1} = A^+ b^{-1}$ and $aA^- = bA^- \iff A^- a^{-1} = A^- b^{-1}$ if A is bipolar vague symmetric.

(ii) $aA^+ = A^+ a$ and $aA^- = A^- a \iff A$ is bipolar vague invariant.

(iii) $aA^+ = bA^+ \iff a^{-1}A^+ = b^{-1}A^+$ and $aA^- = bA^- \iff a^{-1}A^- = b^{-1}A^-$ if A is bipolar vague normal.

Proof. (i) Suppose A is bipolar vague symmetric and

\[aA^+ = bA^+ \text{ and } aA^- = bA^- \]

\[\iff V^-_{aA}(x) = V^-_{bA}(x) \]

\[\iff V^+_{aA}(a^{-1}x) = V^+_{bA}(b^{-1}x) \]

\[\iff V^+_A[(a^{-1}x)^{-1}] = V^+_A[(b^{-1}x)^{-1}] \]

\[\iff V^+_A(x^{-1}(a^{-1})^{-1}) = V^+_A(x^{-1}(b^{-1})^{-1}) \]

\[\iff V^+_{A_{a^{-1}}}(x^{-1}) = V^+_{A_{b^{-1}}}(x^{-1}) \]

\[\iff V^+_{A_{a^{-1}}}(x) = V^+_{A_{b^{-1}}}(x) \]

since A is bipolar vague symmetric, i.e., $A^+ a^{-1} = A^+ b^{-1}$. Hence $aA^+ = bA^+ \iff A^+ a^{-1} = A^+ b^{-1}$.

Suppose A is bipolar vague symmetric and

\[aA^- = bA^- \]

\[\iff V^-_{aA}(x) = V^-_{bA}(x) \]

\[\iff V^-_{aA}(a^{-1}x) = V^-_{bA}(b^{-1}x) \]

\[\iff V^-_A[(a^{-1}x)^{-1}] = V^-_A[(b^{-1}x)^{-1}] \]

\[\iff V^-_A(x^{-1}(a^{-1})^{-1}) = V^-_A(x^{-1}(b^{-1})^{-1}) \]

\[\iff V^-_{A_{a^{-1}}}(x^{-1}) = V^-_{A_{b^{-1}}}(x^{-1}) \]

\[\iff V^-_{A_{a^{-1}}}(x) = V^-_{A_{b^{-1}}}(x) \]

since A is bipolar vague symmetric, i.e., $A^- a^{-1} = A^- b^{-1}$. Hence $aA^- = bA^- \iff A^- a^{-1} = A^- b^{-1}$.
Thus \(aA^+ = bA^+ \iff A^+ a^{-1} = A^+ b^{-1} \) and \(aA^- = bA^- \iff A^- a^{-1} = A^- b^{-1} \) if \(A \) is bipolar vague symmetric.

(ii) Suppose \(A \) is bipolar vague invariant

\[
V_{aA}^+(x) = V_{aA}^+(a^{-1}x) = V_{A}^+(xa^{-1})
\]
\[
V_{aA}^+(x) = V_{aA}^+(x) \forall x \in G
\]

\(\iff aA^+ = A^+ a \)

and

\[
V_{aA}^-(x) = V_{aA}^-(a^{-1}x) = V_{A}^-(xa^{-1})
\]
\[
V_{aA}^-(x) = V_{aA}^-(x) \forall x \in G
\]

\(\iff aA^- = A^- a \)

Hence \(aA^+ = A^+ a \) and \(aA^- = A^- a \iff A \) is bipolar vague invariant.

(iii) Suppose \(A \) is bipolar vague normal and \(aA^+ = bA^+ \)

\(\iff A^+ a^{-1} = A^+ b^{-1} \) by (1)

\(\iff a^{-1}A^+ = b^{-1}A^+ \) by (2)

□

Theorem 3.2. Let \(A \) be a bipolar vague normal group of a group \(G \) and \(a, b \in G \) then

(i) \(aA^+ = bA^+ \iff caA^+ = cbA^+, aA^- = bA^- \iff caA^- = cbA^- \)

(ii) \(aA^+ = bA^+ \iff acA^+ = bcA^+, aA^- = bA^- \iff acA^- = bcA^- \).

Proof. Suppose \(A \) is bipolar vague normal and let \(aA^+ = bA^+ \). Then

\[
V_{aA}[c^{-1}x] = V_{bA}[c^{-1}x] \text{ for } c^{-1}x \in G
\]

\(\iff V_{aA}^+(a^{-1}c^{-1}x) = V_{bA}^+(b^{-1}c^{-1}x) \)

\(\iff V_{aA}^+((ca)^{-1}x) = V_{bA}^+(cb)^{-1}x) \)

\(\iff V_{ca}A^+(x) = V_{cb}A^+(x) \)

\(\iff caA^+ = cbA^+ \).

Now suppose \(A \) is bipolar vague normal and let \(aA^- = bA^- \)

\(\iff V_{aA^{-}}[c^{-1}x] = V_{bA^{-}}[c^{-1}x] \text{ for } c^{-1}x \in G \)

\(\iff V_{aA}^-(a^{-1}c^{-1}x) = V_{bA}^-(b^{-1}c^{-1}x) \)

\(\iff V_{aA}^-(ca)^{-1}x) = V_{bA}^-(cb)^{-1}x) \)

\(\iff V_{ca}A^-(x) = V_{cb}A^-(x) \)

\(\iff caA^- = cbA^- \).
Theorem 3.3. Let A be a bipolar vague group of a group G. Then A is bipolar vague normal iff A is constant on the conjugate classes of G.

Proof. Suppose A is bipolar vague normal group of G and $a, b \in G$. Then $V_A^+(b^{-1}ab) = V_A^+(abb^{-1}) = V_A^+(ae) = V_A^+(a)$ and $V_A^-(b^{-1}ab) = V_A^-(abb^{-1}) = V_A^-(ae) = V_A^-(a)$. Hence A is constant on the conjugate classes of G. Consequently if A is constant on the conjugate classes of G. Let $a, b \in G$. Then $V_A^+(ab) = V_A^+(ab.aa^{-1}) = V_A^+(a(ba)a^{-1}) = V_A^+(ba)$ and $V_A^-(ab) = V_A^-(ab.aa^{-1}) = V_A^-(a(ba)a^{-1}) = V_A^-(ba)$.

Hence A is bipolar vague normal group of G. □

Theorem 3.4. Let A be bipolar vague group of a group G then the following are equivalent.

1. $aA^+ = A^+a$ and $aA^- = A^-a$ foreach $a \in G$
2. $aA^+a^{-1} = A^+, aA^-a^{-1} = A^-$ foreach $a \in G$.

Proof. We have A is bipolar vague group of a group G and $A \in G$. Suppose $aA^+ = A^+a$ and $aA^- = A^-a$. Then,

$$\Rightarrow aA^+a^{-1} = A^+aa^{-1} = A^+e = A^+ \Rightarrow aA^-a^{-1} = A^-aa^{-1} = A^-e = A^-.$$

Thus $aA^+a^{-1} = A^+$ and $aA^-a^{-1} = A^-a$.

Now suppose that $aA^+a^{-1} = A^+$. Then

$$\Rightarrow aA^+a^{-1}a = Aa \Rightarrow aA^+e = A^+a \Rightarrow aA^+ = A^+a$$

and suppose that $aA^-a^{-1} = A^-$. Then

$$\Rightarrow aA^-a^{-1}a = A^-a \Rightarrow aA^-e = A^-a \Rightarrow aA^- = A^-a.$$ □

Remark 3.1. Let A be a bipolar vague group of a group G. Then

$$V_A^+(xy^{-1}) = V_A^+(e) \Rightarrow V_A^+(x) = V_A^+(y),$$

$$V_A^-(xy^{-1}) = V_A^-(e) \Rightarrow V_A^-(x) = V_A^-(y) \forall x, y \in G.$$

The converse of the above result is not true. For example, consider the group $G = \{1, \omega, \omega^2\}$ w.r.t. the binary operation defined below, where ω is the cube root of unity. Let A be a bipolar vague group in G as in table 3 and 4. But
\[V_+^A(1) = [0.9, 0.9] V_+^A(\omega) = [0.6, 0.8] V_+^A(\omega^2) = [0.6, 0.8]. \text{ Now } V_+^A(\omega) = V_+^A(\omega^2). \]

But \(V_+^A(\omega(\omega^2)^{-1}) \neq V_+^A(1) \)

Theorem 3.5. Let \(A \) be a bipolar vague group of a group \(G \). Then \(A \) is a bipolar vague normal subgroup of \(G \) if and only if for all \(x \in G \), \(aA^+(x) = A^+a(x) \) and, \(aA^-(x) = A^-a(x) \).

Proof. Let us assume that \(A \) is a bipolar vague normal subgroup of \(G \). Now we prove that \(aA^+ = A^+a \) and \(aA^- = A^-a \).

To prove this we show that for all \(y \in G \): \(aA^+(y) = A^+a(y) \), \(aA^-(y) = A^-a(y) \), i.e., \(V_+^A(a^{-1}y) = V_+^A(ya^{-1}) \), \(V_+^A(a^{-1})y = V_+^A(ya^{-1}) \). Now
\[
 V_+^A(a^{-1}y) = V_+^A(a^{-1}ya^{-1}a) = V_+^A(a^{-1}(ya^{-1})a) \geq V_+^A(ya^{-1}),
\]
and
\[
 V_+^A(ya^{-1}) = V_+^A(aa^{-1}ya^{-1}) = V_+^A(a(a^{-1}ya^{-1})) \geq V_+^A(a^{-1}y),
\]
\[
 V_+^A(a^{-1}y) = V_+^A(a^{-1}ya^{-1}a) = V_+^A(a^{-1}(ya^{-1})a) \leq V_+^A(ya^{-1}),
\]
and
\[
 V_+^A(ya^{-1}) = V_+^A(aa^{-1}ya^{-1}) = V_+^A(a(a^{-1}ya^{-1})) \leq V_+^A(a^{-1}y).
\]
Hence \(aA^+(y) = A^+a(y) \).

Similarly we can show that \(aA^-(y) = A^-a(y) \) for all \(y \in G \). Thus \(aA^+ = A^+a \) and \(aA^- = A^-a \).

Conversely assume that \(aA^+(x) = A^+a(x) \) and \(aA^-(x) = A^-a(x) \) for all \(x \in G \). Let prove \(A \) is bipolar vague normal subgroup of \(G \). Now for any \(x, y \in G \), \(V_+^A(a^{-1}ya) = V_+^A(ya) = V_+^A(ya) = V_+^A(ya) \geq V_+^A(y) \). Thus \(V_+^A(a^{-1}ya) \geq V_+^A(y) \) and \(V_+^A(a^{-1}ya) = V_+^A(ya) = V_+^A(ya) \leq V_+^A(y) \), and further, \(V_+^A(a^{-1}ya) \leq V_+^A(y) \). Hence \(A \) is a bipolar vague normal subgroup (BVNSG) of \(G \).

\[\square\]

4. **CONCLUSION**

In this paper we introduced the concept of bipolar vague cosets of a group and studied the notion of symmetric-invariant-normal bipolar vague groups. These concepts are used to further study in the development of characterizations about bipolar vague groups (BVGs) and bipolar vague normal groups (BVNGs). In order
our future work is to study the notion of Bipolar vague Quotient groups (BVQGs) and investigate some of the properties based on it.

ACKNOWLEDGMENT

The authors are thankful to Prof. K.L.N Swamy, Dr. Y.Bhargavi and Dr. S.Ragamayi for their precious suggestions.

REFERENCES