BIPOLAR VALUED FUZZY d-ALGEBRA

MOHANA RUPA. SVD, V. LAKSHMI PRASANNAM, AND Y. BHARGAVI

ABSTRACT. In this paper, we introduce and study the concept of bipolar fuzzy subalgebra of d-algebra and we characterize bipolar fuzzy subalgebra to the crisp d-algebra. Further, we discuss the relation between bipolar fuzzy subalgebra and their level cuts. Also, we prove that the homomorphic image and inverse image of a bipolar fuzzy subalgebra is a bipolar fuzzy subalgebra.

1. INTRODUCTION

The concept of fuzzy subsets of a set was introduced by Zadeh, L.A. [9] in 1965. After that, there are several kinds of fuzzy set extensions in the fuzzy set theory, for example, intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, etc. In fuzzy sets the membership degree of elements range over the interval $[0,1]$. The membership degree expresses the degree of belongingness of elements to a fuzzy set. The membership degree 1 indicates that an element completely belongs to its corresponding fuzzy set and membership degree 0 indicates that an element does not belong to fuzzy set. The membership degrees on the interval $(0,1)$ indicate the partial membership to the fuzzy set. Sometimes, the membership degree means the satisfaction degree of elements to some property or constraint corresponding to a fuzzy set. The concept of bipolar-valued fuzzy sets, first introduced by Zhang, W.R. [10] in 1994, is an

\daggercorresponding author

2010 Mathematics Subject Classification. 16Y60, 03G25.

Key words and phrases. d-algebra, bipolar fuzzy set, level cut of a bipolar fuzzy set, bipolar fuzzy subalgebra.
extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar-valued fuzzy set, the membership degree 0 means that the elements are irrelevant to the corresponding property, the membership degree (0,1] indicates that elements somewhat satisfy the property and the membership degree [-1,0) indicates that elements somewhat satisfy the implicit counter-property.

Neggers, J. and Kim, H.S. [8] introduced and studied the concept of d-algebra, which is another generalization of BCK-algebras and investigated relations between d-algebras and BCK-algebras. After that, Jun, Y.B., Neggers, J. and Kim, H.S. [7] introduced the concepts of fuzzy d-subalgebra, fuzzy d-ideal and fuzzy d^*-ideal, and investigated relations among them. Further, they discussed d-ideals in d-algebras.

In this paper, we introduce and study the concept of bipolar fuzzy subalgebra of d-algebra and we characterize bipolar fuzzy subalgebra to the crisp d-algebra. Further, we discuss the relation between bipolar fuzzy d-algebra and their level cuts. Also, we prove that the homomorphic image and inverse image of a bipolar fuzzy subalgebra is a bipolar fuzzy subalgebra.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions, which are necessary for this paper.

Definition 2.1. ([8]) A nonempty set X with a constant 0 and a binary operation $*$ is called a d-algebra, if for all $x, y \in X$ it satisfies the following axioms:

$(dA1)$ $x * x = 0$

$(dA2)$ $0 * x = 0$

$(dA3)$ $x * y = 0$ and $y * x = 0 \Rightarrow x = y.$

Definition 2.2. ([8]) Let Y be a non-empty subset of a d-algebra X, then Y is called subalgebra of X if $x * y \in Y$, for all $x, y \in Y$.

Definition 2.3. ([8]) Let X and Y be two d-algebras. A mapping $f : X \to Y$ is called a homomorphism if $f(x * y) = f(x) * f(y)$, for all $x, y \in X$.

Definition 2.4. ([9]) Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping $\mu : X \to [0, 1]$.
Definition 2.5. ([10]) Let X be the universe of discourse. A bipolar-valued fuzzy set μ in X is an object having the form $\mu = \{x, \mu^-(x), \mu^+(x)/x \in X\}$, where $\mu^- : X \rightarrow [-1, 0]$ and $\mu^+ : X \rightarrow [0, 1]$ are mappings.

For the sake of simplicity, we shall use the symbol $\mu = (X; \mu^-, \mu^+)$ for the bipolar-valued fuzzy set $\mu = \{x, \mu^-(x), \mu^+(x)/x \in X\}$ and use the notion of bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets.

Definition 2.6. ([10]) Let $\mu = (X; \mu^-, \mu^+)$ be a bipolar fuzzy set and $s \times t \in [-1, 0] \times [0, 1]$, the sets $\mu_s^N = \{x \in X/\mu^-(x) \leq s\}$ and $\mu_t^P = \{x \in X/\mu^+(x) \geq t\}$ are called negative s-cut and positive t-cut respectively. For $s \times t \in [-1, 0] \times [0, 1]$, the set $\mu_{(s,t)} = \mu_s^N \cap \mu_t^P$ is called (s,t)-set of $\mu = (X; \mu^-, \mu^+)$.

Definition 2.7. Let $\mu = (X; \mu^-, \mu^+)$ and $\sigma = (X; \sigma^-, \sigma^+)$ be two bipolar fuzzy sets of a universe of discourse X.

The intersection of μ and σ is defined as

$$(\mu^- \cap \sigma^-)(x) = \min\{\mu^-(x), \sigma^-(x)\} \text{ and } (\mu^+ \cap \sigma^+)(x) = \min\{\mu^+(x), \sigma^+(x)\}.$$

The union of μ and σ is defined as

$$(\mu^- \cup \sigma^-)(x) = \max\{\mu^-(x), \sigma^-(x)\} \text{ and } (\mu^+ \cup \sigma^+)(x) = \max\{\mu^+(x), \sigma^+(x)\}.$$

A bipolar set μ is contained in another bipolar set σ, $\mu \subseteq \sigma$ if and only if $\mu^-(x) \geq \sigma^-(x)$ and $\mu^+(x) \leq \sigma^+(x)$, for all $x \in X$.

Definition 2.8. Let $f : X \rightarrow Y$ be a homomorphism from a set X onto a set Y and let $\mu = (X; \mu^-, \mu^+)$ be a bipolar fuzzy set of X and $\sigma = (Y; \sigma^-, \sigma^+)$ be two bipolar fuzzy set of Y, then the homomorphic image $f(\mu)$ of μ is $f(\mu) = ((f(\mu))^-, (f(\mu))^+)$ defined as for all $y \in Y$.

$$(f(\mu))^-(x) = \left\{ \begin{array}{ll}
\max\{\mu^-(x)/x \in f^{-1}(y) & \text{if } f^{-1}(y) \neq \emptyset \\
0 & \text{otherwise}
\end{array} \right.$$

and

$$(f(\mu))^+(x) = \left\{ \begin{array}{ll}
\max\{\mu^-(x)/x \in f^{-1}(y) & \text{if } f^{-1}(y) \neq \emptyset \\
0 & \text{otherwise}
\end{array} \right.$$

The pre-image $f^{-1}(\sigma)$ of σ under f is a bipolar set defined as $(f^{-1}(\sigma))^-(x) = \sigma^-(f(x))$ and $(f^{-1}(\sigma))^+(x) = \sigma^+(f(x))$, for all $x \in X$.
3. Bipolar Fuzzy d-algebra

In this section, we introduce and study the concept of bipolar fuzzy subalgebra of d-algebra and we characterize bipolar fuzzy subalgebra to the crisp d-algebra. Further, we prove that the homomorphic image and inverse image of a bipolar fuzzy subalgebra is a bipolar fuzzy subalgebra.

Throughout this section X stands for a d-algebra unless otherwise mentioned.

Now, we introduce the following.

Definition 3.1. A Bipolar fuzzy set $\mu = (X; \mu^-, \mu^+)$ in X is called a bipolar fuzzy subalgebra if it satisfies the following properties: for any $x, y \in X$,

(i). $\mu^+(x \ast y) \geq \min\{\mu^+(x), \mu^+(y)\}$

(ii). $\mu^-(x \ast y) \leq \max\{\mu^-(x), \mu^-(y)\}$.

Example 1. Consider a d-algebra $X = \{0, 1, 2, 3\}$ with the following Cayley table

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a bipolar fuzzy set $\mu = (X; \mu^-, \mu^+)$, where $\mu^- : X \to [-1, 0]$ and $\mu^+ : X \to [0, 1]$ as

$$\mu^-(x) = \begin{cases} -0.7 & \text{when } x = 0 \\ -0.2 & \text{when } x \neq 0 \end{cases}$$

and

$$\mu^+(x) = \begin{cases} 0.8 & \text{when } x = 0 \\ 0.1 & \text{when } x \neq 0 \end{cases}.$$

Then μ is a bipolar fuzzy subalgebra.

Proposition 3.1. If $\mu = (X; \mu^-, \mu^+)$ is a bipolar fuzzy subalgebra of X, then $\mu^-(0) \leq \mu^-(x)$ and $\mu^+(0) \geq \mu^+(x)$, for all $x \in X$.

Proof. Let $x \in X$. Now, $\mu^-(0) = \mu^-(x \ast x) \leq \max\{\mu^-(x), \mu^-(x)\} = \mu^-(x)$ and $\mu^+(0) = \mu^+(x \ast x) \geq \min\{\mu^+(x), \mu^+(x)\} = \mu^+(x)$. Thus $\mu^-(0) \leq \mu^-(x)$ and $\mu^+(0) \geq \mu^+(x)$.

□
Theorem 3.1. Let $\mu = (X; \mu^-, \mu^+)$ be a bipolar fuzzy set. Then the two level cuts $\mu^N_{s_1}$, $\mu^P_{t_1}$, and $\mu^N_{s_2}$, $\mu^P_{t_2}$ are equal i.e., $\mu^N_{s_1} = \mu^N_{s_2}$ and $\mu^P_{t_1} = \mu^P_{t_2}$ if and only if there is no $x \in X$ such that $s_1 \geq \mu^-(x) \geq s_2$ and $t_1 \leq \mu^+(x) \leq t_2$.

Proof. Suppose $\mu^N_{s_1} = \mu^N_{s_2}$ and $\mu^P_{t_1} = \mu^P_{t_2}$. Suppose if possible there exist $x \in X$ such that

$$s_1 \geq \mu^-(x) \geq s_2 \quad \text{and} \quad t_1 \leq \mu^+(x) \leq t_2.$$

Now, $\mu^-(x) \leq s_1 \Rightarrow x \in \mu^N_{s_1} \Rightarrow \mu^-(x) \leq s_2$ and $\mu^+(x) \leq t_2 \Rightarrow x \in \mu^P_{t_2} \Rightarrow \mu^+(x) \leq t_1$, which is a contradiction. Thus there is no $x \in X$ such that $s_1 \geq \mu^-(x) \geq s_2$ and $t_1 \leq \mu^+(x) \leq t_2$.

Conversely, suppose that there is no $x \in X$ such that $s_1 \geq \mu^-(x) \geq s_2$ and $t_1 \leq \mu^+(x) \leq t_2$. Suppose $\mu^N_{s_1} \neq \mu^N_{s_2}$ and $\mu^P_{t_1} \neq \mu^P_{t_2}$. That implies there exist $x \in \mu^N_{s_1} \& x \notin \mu^N_{s_2}$ and there exist $y \in \mu^P_{t_1} \& y \notin \mu^P_{t_2}$. This implies $\mu^-(x) \leq s_1 \& \mu^-(x) \geq s_2$ and $\mu^+(x) \geq t_1 \& \mu^+(x) \leq t_2$, i.e., $s_1 \geq \mu^+(x) \geq s_2$ and $t_1 \leq \mu^+(x) \leq t_2$. Which is a contradiction. Thus $\mu^N_{s_1} = \mu^N_{s_2}$ and $\mu^P_{t_1} = \mu^P_{t_2}$. \qed

Theorem 3.2. A bipolar fuzzy set $\mu = (X; \mu^-, \mu^+)$ of X is a bipolar fuzzy subalgebra of X if and only if the level cuts are subalgebras i.e., for all $s \times t \in [-1, 0] \times [0, 1], \emptyset \neq \mu^N_{s}$ and $\emptyset \neq \mu^P_{t}$ are subalgebras of X.

Proof. Suppose $\mu = (X; \mu^-, \mu^+)$ is a bipolar fuzzy subalgebra. Let $s \times t \in [-1, 0] \times [0, 1]$ such that $\mu^N_{s} \neq \emptyset$ and $\mu^P_{t} \neq \emptyset$. Let $x, y \in \mu^P_{t}$ and $g, h \in \mu^N_{s}$. Therefore $\mu^+(x) \geq t, \mu^+(y) \geq t, \mu^-(g) \leq s$ and $\mu^-(h) \leq s$. Since $\mu = (X; \mu^-, \mu^+)$ is a bipolar fuzzy subalgebra, we have

\begin{itemize}
 \item [(i)] $\mu^+(x \ast y) \geq \min\{\mu^+(x), \mu^+(y)\} \geq t$
 \item [(ii)] $\mu^-(x \ast y) \leq \max\{\mu^-(x), \mu^-(y)\} \geq s \Rightarrow x \ast y \in \mu^P_{t}$ and $g \ast h \in \mu^N_{s}$.
\end{itemize}

Thus μ^N_{s} and μ^P_{t} are subalgebras of X.

Conversely suppose that the level cuts μ^N_{s} and μ^P_{t} are subalgebras of X. Let $x, y \in X$. Then $\mu^+(x), \mu^+(y) \in [0, 1]$ and $\mu^-(x), \mu^-(y) \in [-1, 0]$. Choose $t = \min\{\mu^+(x), \mu^+(y)\}$ and $s = \max\{\mu^-(x), \mu^-(y)\}$. That implies $\mu^+(x) \geq t, \mu^-(y) \geq t$ and $\mu^-(x) \leq s$, i.e., $x, y \in \mu^P_{t}$ and $x, y \in \mu^N_{s}$, and further $x \ast y \in \mu^P_{t}$ and $x \ast y \in \mu^N_{s}$, $\mu^+(x \ast y) \geq \min\{\mu^+(x), \mu^+(y)\}$ and $\mu^-(x \ast y) \leq \max\{\mu^-(x), \mu^-(y)\}$.

Thus $\mu = (X; \mu^-, \mu^+)$ is a bipolar fuzzy subalgebra. \qed

Theorem 3.3. Let Y be a subalgebra of X, then for any $s \times t \in [-1, 0] \times [0, 1]$ there exist a bipolar fuzzy subalgebra μ of X such that $\mu^N_{s} = Y$ and $\mu^P_{t} = Y$.

\[\text{BIPOLAR VALUED FUZZY D-ALGEBRA} \quad 6803\]
Clearly \(\mu_s = Y \) and \(\mu_t = Y \) Let \(x, y \in X \). If \(x, y \in Y \), then \(x \ast y \in Y \). So, \(\mu^-(x) = \mu^-(y) = \mu^-(x \ast y) = -1 \) and \(\mu^+(x) = \mu^+(y) = \mu^+(x \ast y) = t \). Therefore, (i) \(\mu^-(x \ast y) \leq \max\{\mu^-(x), \mu^-(y)\} \) and (ii) \(\mu^+(x \ast y) \geq \min\{\mu^+(x), \mu^+(y)\} \).

If \(x, y \notin Y \), then \(\mu^-(x) = \mu^-(y) = s \) and \(\mu^+(x) = \mu^+(y) = 0 \). Therefore, (i) \(\mu^-(x \ast y) \leq \max\{\mu^-(x), \mu^-(y)\} \) and (ii) \(\mu^+(x \ast y) \geq \min\{\mu^+(x), \mu^+(y)\} \).

If at most one of \(x, y \in Y \), then at least one of \(\mu^-(x) \& \mu^-(y) \) is equal to \(s \) and \(\mu^+(x) \& \mu^+(y) \) is equal to \(0 \). Therefore, (i) \(\mu^-(x \ast y) \leq \max\{\mu^-(x), \mu^-(y)\} \) and (ii) \(\mu^+(x \ast y) \geq \min\{\mu^+(x), \mu^+(y)\} \).

Thus \(\mu \) bipolar fuzzy subalgebra of \(X \) such that \(\mu^N = Y \) and \(\mu^P = Y \). □

Theorem 3.4. If \(\mu = (X; \mu^-, \mu^+) \) and \(\sigma = (X; \sigma^-, \sigma^+) \) are two bipolar fuzzy subalgebras, then \(\mu \cap \sigma \) is a bipolar fuzzy subalgebra.

Proof. Let \(x, y \in X \). Now,

\[
(\mu^- \cap \sigma^-)(x \ast y) = \min\{\mu^-(x \ast y), \sigma^-(x \ast y)\}
\leq \min\{\max\{\mu^-(x), \mu^-(y)\}, \max\{\sigma^-(x), \sigma^-(y)\}\}
\leq \min\{\max\{\mu^-(x), \sigma^-(x)\}, \max\{\mu^-(y), \sigma^-(y)\}\}
= \min\{(\mu^- \cap \sigma^-)(x), (\mu^- \cap \sigma^-)(y)\}.
\]

Also,

\[
(\mu^+ \cap \sigma^+)(x \ast y) = \min\{\mu^+(x \ast y), \sigma^+(x \ast y)\}
\geq \min\{\min\{\mu^+(x), \mu^+(y)\}, \min\{\sigma^+(x), \sigma^+(y)\}\}
\geq \min\{\max\{\mu^+(x), \sigma^+(x)\}, \max\{\mu^+(y), \sigma^+(y)\}\}
= \min\{(\mu^+ \cap \sigma^+)(x), (\mu^+ \cap \sigma^+)(y)\}.
\]

Thus \(\mu \cap \sigma \) is bipolar fuzzy subalgebra. □
Corollary 3.1. The intersection of arbitrary family of bipolar fuzzy subalgebras is a bipolar fuzzy subalgebra.

In general union of two fuzzy Γ-semirings may not be a fuzzy Γ-semiring.

Example 2. Consider a d-algebra $X = \{0, 1, 2\}$ with the following Cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Define a bipolar fuzzy set $\mu = (X; \mu^-, \mu^+)$, where $\mu^- : X \to [-1, 0]$ and $\mu^+ : X \to [0, 1]$ as

$$
\mu^-(x) = \begin{cases}
-0.7 & \text{if } x = 0 \\
-0.5 & \text{if } x = 1 \\
-0.4 & \text{if } x = 2
\end{cases} \quad \text{and} \quad
\mu^+(x) = \begin{cases}
0.9 & \text{if } x = 0 \\
0.8 & \text{if } x = 1 \\
0.6 & \text{if } x = 2
\end{cases}.
$$

Define a bipolar fuzzy set $\sigma = (X; \sigma^-, \sigma^+)$, where $\sigma^- : X \to [-1, 0]$ and $\sigma^+ : X \to [0, 1]$ as

$$
\sigma^-(x) = \begin{cases}
-0.7 & \text{if } x = 0 \\
-0.5 & \text{if } x = 1 \\
-0.4 & \text{if } x = 2
\end{cases} \quad \text{and} \quad
\sigma^+(x) = \begin{cases}
0.8 & \text{if } x = 0 \\
0.7 & \text{if } x = 1 \\
0.5 & \text{if } x = 2
\end{cases}.
$$

Clearly, μ and σ are bipolar fuzzy subalgebras. Here $(\mu^+ \cup \sigma^+)(1 \ast 0) = 0.6$ is not greater than or equal to $0.8 = \min \{\mu^+ \cup \sigma^+)(1), (\mu^+ \cup \sigma^+)(0)\}$. Therefore $\mu^+ \cup \sigma^+$ is not a bipolar fuzzy subalgebra. Thus union of bipolar fuzzy subalgebras is not a bipolar fuzzy subalgebra.

In particular, we have the following theorem.

Theorem 3.5. Let $\mu = (X; \mu^-, \mu^+)$ and $\sigma = (X; \sigma^-, \sigma^+)$ be two bipolar fuzzy subalgebras, then $\mu \cup \sigma$ is a bipolar fuzzy sub algebra only if $\mu \subseteq \sigma$ or $\sigma \subseteq \mu$.
Proof. Suppose $\mu \subseteq \sigma$. Let $x, y \in X$. Now,

\[(\mu^- \cap \sigma^-)(x \ast y) = \max\{\mu^-(x \ast y), \sigma^-(x \ast y)\}\]
\[= \sigma^-(x \ast y)\]
\[\leq \max\{\sigma^-(x), \sigma^-(y)\}\]
\[\leq \max\{\max\{\mu^-(x), \sigma^-(x)\}, \max\{\mu^+(y), \sigma^-(y)\}\}\]
\[= \max\{(\mu^- \cup \sigma^-)(x), (\mu^- \cup \sigma^-)(y)\}.\]

Also,

\[(\mu^+ \cap \sigma^+)(x \ast y) = \max\{\mu^+(x \ast y), \sigma^+(x \ast y)\}\]
\[= \sigma^+(x \ast y)\]
\[\geq \min\{\sigma^+(x), \sigma^+(y)\}\]
\[\geq \min\{\max\{\mu^+(x), \sigma^+(x)\}, \max\{\mu^+(y), \sigma^+(y)\}\}\]
\[= \max\{(\mu^+ \cap \sigma^+)(x), (\mu^+ \cap \sigma^+)(y)\}.\]

Similarly, we can prove if $\sigma \subseteq \mu$. Thus $\mu \cup \sigma$ is bipolar fuzzy subalgebra.

Theorem 3.6. Let f be a homomorphism from a d-algebra X onto a d-algebra Y. Let σ be a bipolar fuzzy subalgebra of Y, then the pre-image $f^{-1}(\sigma)$ of σ is a bipolar fuzzy subalgebra of X.

Proof. Let $x, y \in X$. Now,

\[(f^{-1}(\sigma))^- (x \ast y) = \sigma^-(f(x \ast y))\]
\[\leq \sigma^-(f(x) \ast f(y))\]
\[\leq \max\{\sigma^-(f(x)), \sigma^-(f(y))\}\]
\[= \max\{(f^{-1}(\sigma))^-(x), (f^{-1}(\sigma))^-(y)\}.\]

Also,

\[(f^{-1}(\sigma))^+(x \ast y) = \sigma^+(f(x \ast y))\]
\[\geq \sigma^+(f(x) \ast f(y))\]
\[\geq \min\{\sigma^+(f(x)), \sigma^+(f(y))\}\]
\[= \min\{(f^{-1}(\sigma))^+(x), (f^{-1}(\sigma))^+(y)\}.\]

Thus $f^{-1}(\sigma)$ is a bipolar fuzzy subalgebra of X.

Theorem 3.7. Let f be a homomorphism from a d-algebra X onto a d-algebra Y. Let μ be a bipolar fuzzy subalgebra of X, then the homomorphic image $f(\mu)$ of μ is a bipolar fuzzy subalgebra of Y.

Proof. Let $x, y \in Y$. Suppose neither $f^{-1}(x)$ nor $f^{-1}(y)$ is non-empty. Since f is homomorphism and so there exist $a, b \in X$ such that $f(a) = x$ and $f(b) = y$ it follows that $a * b \in f^{-1}(x * y)$. Now,

$$(f(\mu))^{-}(x * y) = \max\{\mu^{-}(z)/z \in f^{-1}(x * y)\}$$

$$\leq \max\{\mu^{-}(a * b)/a \in f^{-1}(x), b \in f^{-1}(y)\}$$

$$\leq \max\{\max\{\mu^{-}(a), \mu^{-}(b)\}/a \in f^{-1}(x), b \in f^{-1}(y)\}$$

$$= \max\{\max\{\mu^{-}(a)/a \in f^{-1}(x)\}, \max\{\mu^{-}(b)/b \in f^{-1}(y)\}\}$$

$$= \max\{(f(\mu))^{-}(x), (f(\mu))^{-}(y)\}.$$

Also,

$$(f(\mu))^{+}(x * y) = \max\{\mu^{+}(z)/z \in f^{-1}(x * y)\}$$

$$\geq \max\{\mu^{+}(a * b)/a \in f^{-1}(x), b \in f^{-1}(y)\}$$

$$\geq \max\{\min\{\mu^{+}(a), \mu^{+}(b)\}/a \in f^{-1}(x), b \in f^{-1}(y)\}$$

$$= \min\{\max\{\mu^{+}(a)/a \in f^{-1}(x)\}, \max\{\mu^{+}(b)/b \in f^{-1}(y)\}\}$$

$$= \min\{(f(\mu))^{+}(x), (f(\mu))^{+}(y)\}.$$

Thus $f(\mu)$ is a bipolar fuzzy subalgebra of Y. \qed

References

Department of Mathematics,
Krishna University, Machilipatnam,
Krishna, Andhra Pradesh, India
E-mail address: rupasvd@gmail.com

Department of Mathematics,
P.B. Siddhartha College of Arts & Science,
Vijayawada, Andhra Pradesh, India
E-mail address: drvlp@rediffmail.com

Department of Mathematics
Koneru Lakshmaiah Education Foundation
Vaddeswaram, Guntur, Andhra Pradesh, India-522502
E-mail address: yellabhargavi@gmail.com