CHARACTERIZATION OF GENERALIZED COMPLEMENTS OF A GRAPH

SHANKAR N. UPADHYAY, SABITHA D’SOUZA, SWATI NAYAK, PRADEEP G. BHAT, AND P. SHANKARAN

ABSTRACT. For a graph $G(V, E)$, let $P = \{V_1, V_2, V_3, \ldots, V_k\}$ be a partition of vertex set $V(G)$ of order $k \geq 2$. For all V_i and V_j in P, $i \neq j$, remove the edges between V_i and V_j in graph G and add the edges between V_i and V_j which are not in G. The graph G_{k}^{P} thus obtained is called the k–complement of graph G with respect to the partition P. For each set V_r in P, remove the edges of graph G inside V_r and add the edges of \overline{G} (the complement of G) joining the vertices of V_r. The graph $G_{k(i)}^{P}$ thus obtained is called the $k(i)$–complement of graph G with respect to the partition P. In this paper, we characterize few properties of generalized complements of a graph.

1. INTRODUCTION

Let G be a graph on n vertices and m edges. The complement of a graph G, denoted as \overline{G} has the same vertex set as that of G, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G. If G is isomorphic to \overline{G} then G is said to be self-complementary graph. A graph G is r regular if $\delta(G) = \Delta(G) = r$. If G is any r-regular graph then \overline{G} is also $(n - r - 1)$ regular. For all notations and terminologies we refer [1]. E. Sampathkumar et al. in [2, 3] introduced two types of generalized complements of a graph. For completeness we produce these here.

1corresponding author

2010 Mathematics Subject Classification. 05C30, 05C40 .

Key words and phrases. generalized complements, regular graphs, line graphs, Euler graphs.

7093
Let $P = \{V_1, V_2, V_3, \ldots, V_k\}$ be the partition of vertex set $V(G)$ of order $k \geq 2$. For all V_i and V_j in P, $i \neq j$, remove the edges between V_i and V_j in graph G and add the edges between V_i and V_j which are not in G. The graph G^p_k thus obtained is called the $k-$complement of graph G with respect to the partition P. For each set V_r in P, remove the edges of graph G inside V_r and add the edges of \overline{G} (the complement of G) joining the vertices of V_r. The graph $G^p_k(i)$ thus obtained is called the $k(i)-$complement of graph G with respect to partition P. For more on complements of graphs we refer [5–7].

In this paper, conditions for regularity of generalized complements of a regular graph are found. The generalized complements of a graph isomorphic to its line graph are studied.

Lemma 1.1. Let $P = \{V_1, V_2, \ldots, V_k\}$ be a partition of order $k \geq 2$ of a connected graph G on n vertices. If d is degree of a vertex v in G and d_i is degree if v in $<V_i>$, then degree of v in G^p_k is $n - d + 2d_i - n_i$ where $n_i = |V_i|$.

Proof. Lemma follows by definition of G^p_k. □

Proposition 1.1. For any r-regular graph $G(V, E)$ on n vertices with partition $P = \{V_1, V_2, \ldots, V_k\}$ of V of order $k \geq 2$, G^p_k is regular if (i) and either (ii) or (iii) of the following conditions hold:

(i) k divides n and cardinality of V_i is exactly $\frac{n}{k}$ for every $i = 1, 2, 3, \ldots, k$.

(ii) Vertices in each partite are independent.

(iii) Each vertex v in $<V_i>$ has equal degree.

Proof. Let $G(V, E)$ be any r-regular graph on n vertices. Let $P = \{V_1, V_2, \ldots, V_k\}$ be partition of V of order $k \geq 2$. Suppose degree of a vertex v in $<V_i>$ is d_i for $i = 1, 2, 3, \ldots, k$ then if conditions (i) and (ii) hold, the vertex v will be adjacent to exactly $n - d - (\frac{n}{k})$ vertices in G^p_k. Thus G^p_k is $n - d - (\frac{n}{k})$ regular. On the other hand, if conditions (i) and (ii) hold then the vertex v will be adjacent to exactly $n - d + d_i - (\frac{n}{k})$ vertices in G^p_k. Hence the proof. □

Corollary 1.1. For any r-regular graph $G(V, E)$ on n vertices with partition $P = \{V_1, V_2, \ldots, V_k\}$ of V of order $k \geq 2$,

(1) If G^p_k is $n - d - (\frac{n}{k})$ regular then $G^p_k(i)$ is $d + (\frac{n}{k}) - 1$ regular.

(2) If G^p_k is $n - d + 2d_i - (\frac{n}{k})$ regular then $G^p_k(i)$ is $d - 2d_i + (\frac{n}{k}) - 1$ regular.

Proof. Follows from noting that G^p_k and $G^p_k(i)$ are complements of each other. □
Example 1. For 2-regular graph on 4 vertices and $k = 2$, let us realize Proposition 1.1 and Corollary 1.1

![Figure 1](image-url)

Here $n = 4, d = 2, d_i = 0, \frac{n}{k} = 2, k = 2$

1.1. *k*(i) – Complement of a graph isomorphic to its line graph.

In this section the k(i)–complement of a graph G isomorphic to its line graph are studied. Here for any graph G, $L(G)$ denotes line graph, $G^p_k(i)$ denotes k(i)–complement of G, $|V(G)| = n$ the number of vertices in G and $|E(G)| = e$ number of edges in G. C_n the cycle of length n, $K_{1,n}$ the star graph and P_n path of length $n - 1$.

Theorem 1.1. [1] A connected graph G is isomorphic to its line graph $L(G)$, if and only if G is a cycle.

Martin Aigner [4] showed that there are only two graphs namely C_5 and C_3 with one pendant edge emanating at each of its vertices have the property that their complement is isomorphic to line graph

Observation.

1. Let G be any graph, for an automorphism between $V(G)$ and $V(G^p_k(i))$ one must have $|E(G)| = |V(G)| = |V(G^p_k(i))|$. This implies that G is connected unicyclic graph or G consists of c components each of which are unicyclic.

2. Let $P = \{V_1, V_2, \ldots, V_k\}, k \geq 2$, be a partition of V. Then none of $\langle V_i \rangle$ for $i = 1, 2, \ldots, k$ must be complement of any of nine forbidden graphs [1] for line graphs.

Theorem 1.2. For any graph G of order n and size q, $G^p_k(i)$ is isomorphic to $L(G)$ if any one of the following conditions hold.
(1) G is any cycle C_n and $P = \{V_1, V_2, \ldots, V_n\}$ partition of $V(G)$, with $V_i = 1$ for all i.

(2) G is unicyclic with at least one pendant edge attached to a cycle C_n and $P = \{V_1, V_2, \ldots, V_n\}$ partition of V such that each V_i for $i = 1, 2, \ldots, n$, has exactly one vertex v_i of C_n and all the pendant vertices at v_{i+1}, all the pendant vertices at v_q are in the partite that contains v_1.

(3) G is unicyclic with at least one path attached to a cycle C_n and $P = \{V_1, V_2, \ldots, V_{n-x}\}$ partition of V where x is number of vertices of the path at distance one from vertices of C_n such that each V_i for $i = 1, 2, \ldots, n$, has exactly one vertex v_i of C_n and all the vertices at distance one from v_{i+1} of C_n, all the vertices at distance one from v_q belong to the partite that contains v_1.

Proof. Let G be any graph satisfying condition 1, then by definition of G^p_i isomorphic to $L(G)$. Let G be any graph satisfying condition 2. Let e_1, e_2, \ldots, e_j, be the pendant edges at a vertex of C_n. Then these edges form a complete subgraph in $L(G)$. This is true at every vertex of C_n. Thus $L(G)$ is C_n with complete subgraphs attached at the vertices of C_n for the partition $P = \{V_1, V_2, \ldots, V_n\}$ of V such that each V_i for $i = 1, 2, \ldots, n$ has exactly one vertex v_i of C_n and all the pendant vertices at v_{i+1}, all the pendant vertices at v_q are in the partite that contains v_1. Then G^p_i is C_n with complete subgraphs attached at the vertices of C_n and isomorphic to $L(G)$.

If G is any graph satisfying condition 3 the result follows similar way. □

Example 2. Condition 1.

![Diagram](image)

Figure 2

Condition 2.
2. Characterization of Generalized Complements of Euler Graphs

Definition 2.1. A connected graph G is called Eulerian graph if it contains a closed trail containing all the edges of G.

Theorem 2.1. If $G(V, E)$ is Eulerian and $P = \{V_1, V_2, \ldots, V_k\}$ partition for V of order $k \geq 2$, such that for at least one i, $i = 1, 2, \ldots, k$, $|V_i| = 2$ then $G^p_{k(i)}$ is non Eulerian.

Proof. Let $G(V, E)$ be any Eulerian graph. Then every vertex of G is of even degree. Suppose $P = \{V_1, V_2, \ldots, V_k\}$ partition for V of order $k \geq 2$. Let V_i be a partition having only two vertices say u and v. Then in $G^p_{k(i)}$, degree of u and v will be increased by 1 if u and v are not adjacent in $<V_i>$ and degree of u and v will be decreased by 1 if u and v are adjacent in $<V_i>$. Thus in either of the cases $G^p_{k(i)}$ has a vertex of odd degree. Hence $G^p_{k(i)}$ is not Eulerian. □

Theorem 2.2. If G is any Eulerian graph and $P = \{V_1, V_2, \ldots, V_k\}$ partition for V of order $k \geq 2$, then $G^p_{k(i)}$ is Eulerian if all the following conditions hold good.

1. $|V_i|$ is odd for each $i = 1, 2, \ldots, k$.
2. For every vertex v of odd degree in $<V_i>$ there must be odd number of vertices in V_i not adjacent to v for $i = 1, 2, \ldots, k$.
For every vertex \(v \) of even degree in \(< V_i > \) there must be even number of vertices in \(V_i \) not adjacent to \(v \) for \(i = 1, 2, \ldots, k \).

Proof. Let \(G \) be any Eulerian graph. Then degree of every vertex of \(G \) is even. Let \(P = \{V_1, V_2, \ldots, V_k\} \) be a partition for \(V \) of order \(k \geq 2 \) for which above three conditions hold. Let vertex \(v \in V_i \) for some \(i = 1, 2, \ldots, k \). Suppose degree of \(v \) in \(G \) is \(d \) and degree of \(v \) in \(< V_i > \) is \(d_i \). If \(d_i \) is odd then there are odd number of vertices say \(n_i \) in \(< V_i > \) which are not adjacent to \(v \). Then degree of \(v \) in \(G^p_k \) is \(d - d_i + n_i \) which is even. On the other hand, if \(d_i \) is even then there are even number of vertices say \(l_i \) in \(< V_i > \) which are not adjacent to \(v \). Then degree of \(v \) in \(G^p_{k(i)} \) is \(d - d_i + l_i \) which is even. This is true for every \(v \) and each \(i = 1, 2, \ldots, k \). Thus every vertex of \(G^p_{k(i)} \) is of even degree. Hence \(G^p_{k(i)} \) is Eulerian. \(\square \)

References

DEPARTMENT OF MATHEMATICS
MAHARAJA INSTITUTE OF TECHNOLOGY
THANDAVAPURA-571302, INDIA
Email address: shankar.upadhyay8@gmail.com

DEPARTMENT OF MATHEMATICS
MANIPAL INSTITUTE OF TECHNOLOGY
MANIPAL ACADEMY OF HIGHER EDUCATION
MANIPAL-576104, INDIA
Email address: sabitha.dsouza@manipal.edu

DEPARTMENT OF MATHEMATICS
MANIPAL INSTITUTE OF TECHNOLOGY
MANIPAL ACADEMY OF HIGHER EDUCATION
MANIPAL-576104, INDIA
Email address: swati.nayak@manipal.edu

DEPARTMENT OF MATHEMATICS
MANIPAL INSTITUTE OF TECHNOLOGY
MANIPAL ACADEMY OF HIGHER EDUCATION
MANIPAL-576104, INDIA
Email address: pg.bhat@manipal.edu

DEPARTMENT OF MATHEMATICS
NMAM INSTITUTE OF TECHNOLOGY
NITTE-574110, INDIA
Email address: shankarpbharath@yahoo.co.in