UNITARY DIVISOR ADDITION CAYLEY GRAPHS

C. THILAGA\(^1\) AND P. B. SARASLA

ABSTRACT. Let \(n \geq 1 \) be an integer and \(S \) be the set of Unitary Divisor of \(n \). Then the set \(S^* = \{ s, n - s/s \in S \text{ and } n \neq s \} \) is a symmetric subset of the group \((\mathbb{Z}_n, \oplus)\), the additive Abelian group of integers modulo \(n \). The Cayley graph of \((\mathbb{Z}_n, \oplus)\) associated with the above symmetric subset \(S^* \) is called the Unitary Divisor Addition Cayley graph and it is denoted by \(G_n(D) \). That is the graph \(G_n(D) \) is the graph whose vertex set is \(V = \{0, 1, \ldots, (n - 1)\} \) and the edge set \(E \) is the set of all ordered pairs of vertices \(x, y \) such that \(x + y \in S^* \). In this paper, we discuss the degree of the vertices and the total number of edges and some properties of Unitary Divisor Addition Cayley graph \(G_n(D) \).

1. INTRODUCTION

A graph \(G \) is a pair \((V, E)\), where \(V = \{0, 1, \ldots, (n - 1)\} \), be the vertex set and \(E \) is a set of unordered pairs of elements of \(V \) are the edges of \(G \). The degree of a vertex \(v \), \(d(v) \) in \(G \) is the number of edges incident at \(v \). If the degree of each vertex is equal, say \(r \) in \(G \), then \(G \) is called \(r \)-regular graph. A graph is called \((r_1, r_2)\)-semi regular if its vertex set can be partitioned into two subsets \(V_1 \) and \(V_2 \) such that all the vertices in \(V_i \) are of degree for \(i = 1, 2 \). Vertices \(u \) and \(v \) of a graph \(G \) are adjacent if \(uv \in E(G) \). Throughout the text, we consider non-trivial, finite, undirected graph with no loops or multiple edges. For standard terminology and notation in graph theory we follow [1],[4].

\(^1\) corresponding author

2010 Mathematics Subject Classification. 05C50, 05C78.

Key words and phrases. Unitary Cayley Graphs; Unitary Addition Cayley graph; Unitary Divisor Cayley graph; Unitary Divisor Addition Cayley graph.
For a positive integer \(n > 1 \), the Unitary Addition Cayley graph \(G_n \) is the graph whose vertex set is \(\mathbb{Z}_n \), the integers modulo \(n \) and if \(U_n \) denotes set of all units of the ring \(\mathbb{Z}_n \), then two vertices \(a, b \) are adjacent if and only if \(a + b \in U_n \) [2] and also refer [5], [6].

Let \(n \geq 1 \) be an integer and \(S \) be the set of unitary divisor of \(n \). Then the set \(S^* = \{ s, n - s/s \in S, n \neq s \} \) is a symmetric subset of the group \((\mathbb{Z}_n, \oplus)\), the additive abelian group of integers modulo \(n \). The Cayley graph of \((\mathbb{Z}_n, U_n)\), associated with the above symmetric subset \(S^* \) is called the Unitary Divisor Cayley graph \(G(\mathbb{Z}_n, U_n) \). That is \(G(\mathbb{Z}_n, U_n) \) is the graph whose vertex set \(V = \{0, 1, \ldots, (n - 1)\} \) and the edge set \(E \) is the set of all ordered pairs of vertices \(x, y \), such that \(x - y \in S^* \) or \(y - x \in S^* \), see [3].

Now motivated by the Unitary Addition Cayley graph and Unitary Divisor Cayley graph we introduce the Unitary Divisor Addition Cayley graph as follows: Let \(n \geq 1 \) be an integer and \(S \) be the set of Unitary Divisor of \(n \). Then the set \(S^* = \{ s, n - s/s \in S \text{ and } n \neq s \} \) is a symmetric subset of the group \((\mathbb{Z}_n, \oplus)\), the additive abelian group of integers modulo \(n \) the Cayley graph of \((\mathbb{Z}_n, \oplus)\) associated with the above symmetric subset \(S^* \) is called the Unitary Divisor Addition Cayley graph and it is denoted by \(G_n(D) \). That is the graph \(G_n(D) \) is the graph whose vertex set is \(V(G_n(D)) = \{0, 1, \ldots, (n - 1)\} \) and the edge set \(E \) is the set of all ordered pairs of vertices \(x, y \), such that \(x + y \in S^* \).

The diameter of graph is the maximum distance between the pair of vertices. The number of edges in the maximum matching of \(G \) is called the matching number. Let \(G(V, E) \) be a connected with vertex set \(V \) and edge set \(E \). A subset of \(V \) is called independence if its vertices are mutually non-adjacent. A graph is Eulerian if the graph both connected and has a closed trial(a walk with no repeated edges) containing all edges of the graph. A connected graph has an Euler cycle if and only if every vertex has even degree. A Hamiltonian path is an undirected or directed graph that visits each vertex exactly once.
2. Some Examples of Unitary Divisor Addition Cayley Graph

\[\text{Figure: } G_2(D)\]
\[\text{Figure: } G_3(D)\]
\[\text{Figure: } G_4(D)\]
\[\text{Figure: } G_5(D)\]

Theorem 2.1. Let \(m\) be any vertex of Unitary Divisor Addition Cayley graph \(G_n(D)\), then the degree of \(m\) is
\[
d(m) = \begin{cases}
\lvert S^* \rvert & \text{if } 2m \pmod{n} \notin S^* \\
\lvert S^* \rvert - 1 & \text{if } 2m \pmod{n} \in S^*.
\end{cases}
\]

Proof. Consider Unitary Divisor Addition Cayley graph \(G_n(D)\) with vertex set \(V(G_n(D)) = \{0, 1, \ldots, (n-1)\}\). Let \(m\) be any vertex in \(V(G_n(D))\). Let \(S\) be the set of unitary divisor of \(n\) and \(S^* = \{s, n-s/s \in S \text{ and } n \neq s\}\). The graph \(G_n(D)\) is \(|S^*|\) (equal to 2)-regular if \(n = 2^\gamma, \gamma > 1\), and \(|S^*|, |S^*| - 1\)-semi regular otherwise.

The vertex \(0 \in V(G_n(D))\) and \(0 \notin S^*\), 0 is adjacent to all the vertices in \(S^*\). Hence degree of 0 is \(|S^*|\). That is \(d(0) = |S^*|\). If the vertex \(m \in V(G_n(D))\) then either \(m \in S^*\) or \(m \notin S^*\).

Suppose \(m \in S^*\) and \(m = n - m\). If \(m = n - m\) implies \(2m = n\). Take \((mod n)\) on both sides we get \(2m \pmod{n} = n \pmod{n}\). That is \(2m \pmod{n} = 0 \notin S^*\). The \(m\) vertex is adjacent to all the vertices in \(S^*\). Hence degree of \(m\) is \(|S^*|\). That is \(d(m) = |S^*|\).

Suppose \(m \in S^*\) and \(m \neq n - m\). Also \(m \notin S^*\). Then \(2m \pmod{n} \neq n \pmod{n}\). Let \(2m \pmod{n} = k \pmod{n}\). If \(k \notin S^*\) then the vertex \(m\) is adjacent to all the vertices in \(S^*\). Hence degree of \(m\) is \(|S^*|\). That is \(d(m) = |S^*|\). If \(k \in S^*\) then \(d(m) = |S^*| - 1\).

Hence \(d(m) = \begin{cases}
\lvert S^* \rvert & \text{if } 2m \pmod{n} = k \notin S^* \\
\lvert S^* \rvert - 1 & \text{if } 2m \pmod{n} = k \in S^*.
\end{cases}\)

\(\square\)

Remark 2.1. If \(n = 2^\gamma, \gamma > 1\), then the Unitary Divisor is 1. Hence \(S^* = \{1, n-1\}\). The Unitary Divisor Addition Cayley graph is a cycle. Thus \(d(n) = 2\).
Remark 2.2. If $n = p^\alpha$, $\alpha \geq 1$, then $S^* = \{1, n - 1\}$. The Unitary Divisor Addition Cayley graph is a path. The vertices $\lceil \frac{n}{2} \rceil$ and $\lfloor \frac{n}{2} \rfloor$ have degree 1 and all other vertices have degree 2.

Theorem 2.2. The total number of edges in the Unitary Divisor Addition Cayley graph $G_n(D)$ is

$$
\begin{cases}
n & \text{if } n = 2^\gamma, \gamma > 1 \\
\frac{|S^*|(n-1)}{2} & \text{if } n \text{ is odd} \\
\frac{|S^*|(n-1)+1}{2} & \text{if } n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_r^{\alpha_r} \\
\frac{|S^*|(n-1)}{2} + 1 & \text{if } n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_r^{\alpha_r}.
\end{cases}
$$

Proof. Suppose that $n = 2^\gamma, \gamma > 1$.

Then 1 is the only unitary divisor of n, so that $S^* = \{1, n - 1\}$. The Unitary Divisor Addition Cayley graph is a cycle. So each vertex of degree is 2. Therefore number of edges is n.

Suppose n is odd, then $n - |S^*|$ vertices having degree $|S^*|$ and $|S^*|$ vertices having degree $|S^*| - 1$. Therefore number of edges in $G_n(D)$ is $\frac{(n-|S^*|)|S^*|+|S^*|(|S^*| - 1)}{2} = \frac{|S^*|(n-1)}{2}$.

Suppose $n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_r^{\alpha_r}$. Here $(n - |S^*| + 1)$ vertices having degree $|S^*|$ and $|S^*| - 1$ vertices having degree $|S^*| - 1$. Therefore number of edges is $\frac{(n-|S^*|+1)|S^*|+|S^*|(|S^*| - 1)}{2} = \frac{|S^*|(n-1)+1}{2}$.

Suppose $n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_r^{\alpha_r}$.

Here $(n - |S^*| + 2)$ vertices having degree $|S^*|$ and $|S^*| - 2$ vertices having degree $|S^*| - 1$. The number of edges is $\frac{(n-|S^*|+2)|S^*|+(|S^*| - 2)(|S^*| - 1)}{2} = \frac{|S^*|(n-1)}{2} + 1$. □

Theorem 2.3. The Unitary Divisor Addition Cayley graph is Eulerian iff $n = 2^\gamma$, $\gamma > 1$.

Proof. Suppose $G_n(D)$ is Eulerian. If possible n is other than 2^γ, $\gamma > 1$.

A graph is Eulerian iff G is connected and its vertices all have even degree. Therefore $G_n(D)$ is not Eulerian, a contradiction to our assumption.

Next suppose $n = 2^\gamma$ and $\gamma > 1$, then the degree of each vertex is $|S^*|$ and $|S^*| = 2$ is even. Hence the result. □

Theorem 2.4. The Unitary Divisor Addition Cayley graph is Hamiltonian for n is even and also connected for all n.

Proof. Now we construct a cycle $C = (0, n - 1, 2, n - 3, 4, \ldots, n - 4, 3, n - 2, 1, 0)$.

\[\text{C. THILAGA AND P. B. SARASLIJA}\]
Since the cycle \(C\) contains all the vertices of \(G_n(D)\) exactly once, \(C\) is a Hamiltonian cycle of \(G_n(D)\). Thus \(G_n(D)\) is Hamiltonian.

Suppose \(n\) is even, the Unitary Divisor Addition Cayley graph is Hamiltonian. Thus, find a Hamiltonian path \(P = (n - 1, 2, n - 3, 4, \ldots, n - 4, 3, n - 2, 0)\). Then \(G_n(D)\) is connected.

Suppose \(n\) is odd, there exists a path \((n + 1, 2, \ldots, 3, n - 2, 1, 0, n - 1, 2, n - 3, \ldots, n - 1)\). Thus \(G_n(D)\) is connected.

Theorem 2.5. The Unitary Divisor Addition Cayley graph is bipartite iff \(n = 2^\alpha, \alpha > 1\) and \(n = p^m, m \geq 1; p\) is prime.

Proof. Suppose \(n = 2^\alpha, \alpha > 1\) and \(n = p^m, m \geq 1\). We can split the vertex set into two parts \(X = \{0, 2, 4, \ldots, n - 2\}\) and \(Y = \{1, 3, \ldots, n - 1\}\) and \(V = X \cup Y\). Hence \(G_n(D)\) is bipartite.

Theorem 2.6. The diameter of Unitary Divisor Addition Cayley graph is

\[
\begin{cases}
n - 1 & \text{if } n = p^m \\
\frac{n}{2} & \text{if } n = 2^\alpha \\
2 & \text{if } n = 6, 12 \\
3 & \text{otherwise}.
\end{cases}
\]

Proof. Suppose \(n = p^m, m \geq 1\); it is a bipartite graph with \(X = \{1, 3, \ldots, n - 1\}\) and \(Y = \{0, 2, \ldots, n - 2\}\). It is also a path graph. Hence diameter=\(n - 1\).

Suppose \(n = 2^\alpha, \alpha > 1\); the Unitary Divisor Addition Cayley graph is bipartite, the vertex set can split into two parts \(X = \{0, 2, 4, \ldots, n - 2\}\) and \(Y = \{1, 3, 5, \ldots, n - 1\}\), it is a cycle. Hence diameter is \(\frac{n}{2}\).

Suppose \(n = 6\) and \(n = 12\), there exists a path \((1, 0, n - 1)\) of length 2. Hence diameter=2.

Suppose \(n\) is odd. Then there exists two non adjacent vertices \(x\) and \(y\) in vertex set in \(G_n(D)\) such that \(x\) is even and \(y\) is odd and have no common neighbour. Let \(z\) be a neighbour of \(x\) in \(S^*\) and odd, there have a common neighbour \(u\). Hence we take a path \(x - z - u - y\) of length 3. Hence diameter =3.

Theorem 2.7. The matching number of Unitary Divisor Addition Cayley graph is

\[
\begin{cases}
\frac{n}{2} & \text{if } n \text{ is even} \\
\frac{n - 1}{2} & \text{if } n \text{ is odd}.
\end{cases}
\]
Proof. In $G_n(D)$, the generating set S^* must contain 1.

Suppose n is even. The edge set $E_1 = \{(0, 1), (n - 1, 2), (n - 2, 3), \ldots, \left(\frac{n+2}{2}, \frac{n}{2}\right)\}$ is an independent set in $G_n(D)$ and $|E_1| = \frac{n}{2}$. So the matching number is $\frac{n}{2}$.

Suppose n is odd. The edge set $E_2 = \{(0, 1), (n - 1, 2), \ldots, \left(\frac{n+3}{2}, \frac{n-1}{2}\right)\}$ is an independent set in $G_n(D)$, and $|E_2| = \frac{n-1}{2}$. Therefore matching number is $\frac{n-1}{2}$.

\[\square \]

REFERENCES

DEPARTMENT OF MATHEMATICS
NOORUL ISLAM CENTRE FOR HIGHER EDUCATION
KUMARACOIL-629175
Email address: thilagakmoorthy7@gmail.com

DEPARTMENT OF MATHEMATICS
NOORUL ISLAM CENTRE FOR HIGHER EDUCATION
KUMARACOIL-629175
Email address: sijavk@gmail.com