SOME PROPERLY HEREDITARY BITOPOLOGICAL PROPERTIES

Bakr Alkasasbeh and Hasan Hdeib

ABSTRACT. In this paper we discuss some pairwise properly hereditary properties concerning pairwise separation axiom, and obtain several results related to these properties.

1. INTRODUCTION

The concept of bitopological spaces was initiated by Kelly ([5]). Abitopological space is an order triple \((X, \tau_1, \tau_2)\) where \(X\) is a non-empty set and \(\tau_1, \tau_2\) are two topologies on \(X\). Since then several mathematicians studied various properties in bitopological spaces and bitopological spaces turned to be an important field in general topology, Fletcher, P., Hoyle, H.B. and Patty, C.W. (1969) [3], Kim, Y.W. (1968) [7], Fora, A. and Hdeib, H.(1983) [4], Kilicman, A. and Salleh, Z.(2007) [6]. Several results were obtained in the above studies that generalize topological properties in bitopological spaces. Still pairwise properly hereditary properties are not investigated. In this paper we discuss some pairwise properly hereditary properties and try to obtain various results concerning their properties. Then \(\tau_i\)-clousre of a set \(A\) will be denoted by \(\text{cl}_iA\)

\(^1\)corresponding author

2020 Mathematics Subject Classification. 54E55.

Key words and phrases. Bitopological space, pairwise compact, pairwise Lindelöf, pairwise separation, pairwise countably compact, pairwise continuous function, pairwise \(\sigma\)-compact.
2. SOME PROPERLY HEREDITARY BITOPOLOGICAL PROPERTIES

Definition 2.1. ([1]) A topological property P is called properly (respectively, closed, open, F_σ, G_δ, etc.) hereditary property, if the following statement holds: if every proper (respectively, closed, open, F_σ, G_δ, etc.) subspace has the property P, then the whole space has the property P.

Definition 2.2. ([10]) A bitopological space (X, τ_1, τ_2) is said to be pairwise T_0 if for any pair of distinct points x and y in X, there exist τ_1-open set U and τ_2-open set V such that $x \in U$, $y \notin U$ or $x \notin V$, $y \in V$.

Definition 2.3. ([10]) A bitopological space (X, τ_1, τ_2) is said to be pairwise T_1 if for any pair of distinct points x and y in X, there exist τ_1-open set U and τ_2-open set V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

Definition 2.4. ([5]) A bitopological space (X, τ_1, τ_2) is said to be pairwise T_2 if for any pair of distinct points x and y in X, there exist τ_1-open set U and τ_2-open set V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition 2.5. ([5]) A bitopological space (X, τ_1, τ_2) is said to be τ_1 regular with respect to τ_2 if for any $x \in X$ and τ_1-closed set F in X not containing x, there exist τ_1-open set U and τ_2-open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$.

Definition 2.6. ([5]) A bitopological space (X, τ_1, τ_2) is said to be pairwise regular if, and only if, it is τ_1 regular with respect to τ_2 and τ_2 regular with respect to τ_1.

Definition 2.7. ([5]) A bitopological space (X, τ_1, τ_2) is said to be pairwise normal if whenever A is τ_1-closed set and B is τ_2-closed set in X such that $A \cap B = \emptyset$, there exist τ_1-open set U and τ_2-open set V such that $A \subseteq V$, $B \subseteq U$ and $U \cap V = \emptyset$.

Definition 2.8. ([9]) Let (X, τ_1, τ_2) be a bitopological space then:

i) G is called pairwise open if, and only if, G is τ_1-open and τ_2-open in X.

ii) F is called pairwise closed if, and only if, F is τ_1-closed and τ_2-closed in X.

Theorem 2.1. Let (X, τ_1, τ_2) be a bitopological space with more than two points. Then if every proper subspace of X is pairwise T_0, then X is pairwise T_0.

Proof. Let $x \neq y$ in X and let $z \in X \setminus \{x, y\}$. Let $A = X \setminus \{z\}$. Since $(A, \tau_{1A}, \tau_{2A})$ is pairwise T_0, then there exist τ_{1A}-open set U_1 and τ_{2A}-open set V_1 such that $x \in U_1$, $y \notin U_1$ or $x \notin V_1$, $y \in V_1$, and hence there are τ_1-open set U and
then there exist \emptyset

Proof. Let $x \neq y$ in X and let $z \in X \setminus \{x, y\}$. Let $A = X \setminus \{z\}$. Since $(A, \tau_{1A}, \tau_{2A})$ is pairwise T_1, then there exist τ_{1A}—open set U_1 and τ_{2A}—open set V_1 such that $x \in U_1$, $y \notin U_1$ and $x \notin V_1$, $y \in V_1$, and hence there are τ_1—open set U and τ_2—open set V in X such that $U_1 = U \cap A$ and $V_1 = A \cap V$, $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

Theorem 2.3. Let (X, τ_1, τ_2) be a bitopological space with more than two points. Then if every proper subspace X is pairwise T_2, then X is pairwise T_2.

Proof. Let $x \neq y$ in X and let $z \in X \setminus \{x, y\}$. Let $A = X \setminus \{z\}$. Since $(A, \tau_{1A}, \tau_{2A})$ is pairwise T_2, then there exist τ_{1A}—open set U_1 and τ_{2A}—open set V_1 such that $x \in U_1$, $y \notin U_1$ and $x \notin V_1$, $y \in V_1$ and $U_1 \cap V_1 = \emptyset$. Thus there are τ_1—open set U and τ_2—open set V in X such that $U_1 = U \cap A$ and $V_1 = A \cap V$, $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 2.4. Let (X, τ_1, τ_2) be a bitopological space with more than two points. Then if every proper subspace X is pairwise regular, then X is pairwise regular.

Proof. Let $x \in X$ and F is τ_1—closed set in X not containing x, let $y \in X \setminus (\{x\} \cup F)$. Let $A = X \setminus \{y\}$. Since $(A, \tau_{1A}, \tau_{2A})$ is pairwise regular, then there exist τ_{1A}—open set U_1 and τ_{2A}—open set V_1 such that $x \in U_1$, $F \subseteq V_1$ and $U_1 \cap V_1 = \emptyset$, and hence there are τ_1—open set U and τ_2—open set V in X such that $U_1 = U \cap A$ and $V_1 = A \cap V$ such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. Hence X is τ_1 regular with respect to τ_2. By a similar method we can show that X is τ_2 regular with respect to τ_1. Hence (X, τ_1, τ_2) is pairwise regular.

Corollary 2.1. Pairwise T_3 is properly hereditary property.

Theorem 2.5. Let (X, τ_1, τ_2) be a bitopological space with more than two points. Then if every proper subspace X is pairwise normal, then X is pairwise normal.

Proof. Let A be a τ_1—closed set and B be a τ_2—closed set in X such that $A \cap B = \emptyset$, let $x \in X \setminus (A \cup B)$. Let $C = X \setminus \{x\}$. Since $(C, \tau_{1C}, \tau_{2C})$ is pairwise normal, then there exist τ_{1C}—open set U_1 and τ_{2C}—open set V_1 such that $A \subseteq V_1$, $B \subseteq U_1$
and $U_1 \cap V_1 = \emptyset$, and hence there are τ_1—open set U and τ_2—open set V in X such that $U_1 = U \cap C$ and $V_1 = C \cap V$, such that $A \subseteq V$, $B \subseteq U$ and $U \cap V = \emptyset$. □

Corollary 2.2. Pairwise T_4 is properly hereditary property.

Definition 2.9. $(\{4\})$ A function $f : (X, \tau_1) (Y, \tau_1, \tau_2)$ is pairwise continuous (pairwise open, pairwise closed, pairwise homemorphism, respectively) if, and only if, $f : (X, \tau_1) (Y, \tau_1)$ and $f : (X, \tau_2) (Y, \tau_2)$ are continuous (open, closed, homemorphism, respectively).

Definition 2.10. A pairwise Hausdorff bitopological space (X, τ_1, τ_2) is said to be pairwise minimal Hausdorff if, and only if, every one-to-one pairwise continuous function of X to a pairwise Hausdorff space Y is a pairwise homemorphism.

Theorem 2.6. Pairwise minimal Hausdorff is properly hereditary property.

Proof. Suppose that every proper subspace of (X, τ_1, τ_2) is pairwise minimal Hausdorff. Since every proper subspace of (X, τ_1, τ_2) is pairwise Hausdorff, then (X, τ_1, τ_2) is pairwise Hausdorff. Let f be a one-to-one pairwise continuous function of (X, τ_1, τ_2) to a pairwise Hausdorff space (Y, τ_1, τ_2) and let $x \in X$. Let $A = X \setminus \{x\}$, then $h : (A, \tau_1) (Y - f(\{x\}, \tau_1)$ and $h : (A, \tau_2) (Y - f(\{x\}, \tau_2)$ is one-to-one pairwise continuous function where $h = f$ on A and hence h is pairwise homemorphism, since $f(X) = f(X - \{x\}) \cup f(\{x\}) = f(A) \cup f(\{x\}) = h(A) \cup f(\{x\}) = Y \setminus f(\{x\}) \cup f(\{x\}) = Y$, so f is onto.

Let U pairwise open set in X, if $X \neq U$, we have two cases:

(i) if $x \not\in U$, then $f(U) = h(U)$, and since h is pairwise homemorphism we have $h(U)$ is pairwise open in $Y - f(x)$ so it is pairwise open in Y.

(ii) if $x \in U$, let $y \in X \setminus U$. Let $B = X \setminus \{y\}$. So $g : BY \setminus f(\{y\})$ is one-to-one pairwise continuous map were $g = f$ on B and hence g is pairwise homemorphism that implies $f(U) = g(U)$ is pairwise open in $Y \setminus g(\{y\})$ so it is pairwise open in Y.

From (i) and (ii) we have f is pairwise open, so f is pairwise homemorphism. If $U = X$, since f is onto, then $f(U) = Y$ so it is pairwise open, so f is pairwise homemorphism.

□

Definition 2.11. $(\{3\})$ A cover $\mathcal{U} = \{U_\alpha : \alpha \in \Delta\}$ is said to be pairwise open cover of X if, and only if, $\mathcal{U} \subseteq \tau_1 \cup \tau_2$ and for each $i \in \{1, 2\}$, $\bigcap U \cap \tau_i$ contains at least a non empty set.
Definition 2.12. ([3]) A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise compact if for every pairwise open cover of the space \(X\) has a finite subcover.

Definition 2.13. ([3]) A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise Lindelöf if for every pairwise open cover of the space \(X\) has a countable subcover.

Definition 2.14. ([3]) A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise countably compact if for every pairwise countable open cover of the space \(X\) has a finite subcover.

Theorem 2.7. The pairwise compactness is a closed hereditary property (i.e if every pairwise closed subset \(A\) of a pairwise compact space \((X, \tau_1, \tau_2)\) is pairwise compact then \((X, \tau_1, \tau_2)\) is pairwise compact).

Proof. Let \(U = \{U_\alpha : \alpha \in \Delta\}\) be a pairwise open cover of a bitopological space \((X, \tau_1, \tau_2)\). Pick \(U_{\alpha_0} \in U\) with \(U_{\alpha_0} \neq \emptyset\). Let \(A = X \setminus U_{\alpha_0}\), then \(A\) is a pairwise closed subspace of \((X, \tau_1, \tau_2)\). Therefore \((A, \tau_{1A}, \tau_{2A})\) is pairwise compact. Then \(\{U_\alpha : \alpha \in \Delta\} \setminus \{U_{\alpha_0}\}\) is a pairwise open cover of \(A\), hence it has finite subcover \(\{U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}\}\). Therefore \(\{U_{\alpha_0}, U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}\}\) is a finite subcover of \(X\), so \(X\) is pairwise compact. \(\square\)

Theorem 2.8. Pairwise countably compactness and pairwise Lindelöfness space are closed hereditary property.

Proof. The proof follows by a similar method that used in Theorem 2.7. \(\square\)

Definition 2.15. ([8]) A bitopological space \((X, \tau_1, \tau_2)\) is said to be \(\tau_1\) locally compact with respect to \(\tau_2\) if for each point \(x \in X\), there is \(\tau_1\)-open neighbourhood of \(x\) whose \(\tau_2\)- closure is compact.

Definition 2.16. ([8]) A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise locally compact if, and only if, it is \(\tau_1\) locally compact with respect to \(\tau_2\) and \(\tau_2\) locally compact with respect to \(\tau_1\).

Theorem 2.9. Pairwise \(T_1\), pairwise locally compact space is properly hereditary property.

Proof. Let \((X, \tau_1, \tau_2)\) be a bitopological space, since pairwise \(T_1\) is properly hereditary property, then \((X, \tau_1, \tau_2)\) is pairwise \(T_1\). Let \(x \in X\) and let \(y \in X \setminus \{x\}\). Let \(A = X \setminus \{y\}\), since \((A, \tau_{1A}, \tau_{2A})\) is pairwise locally compact, there is \(\tau_{1A}\)-open
neighbourhood U of x whose τ_2-closure is compact, and since (X, τ_1, τ_2) is pairwise T_1, then U is τ_1-open neighbourhood of x whose τ_2-closure is compact then (X, τ_1, τ_2) is τ_1 locally compact with respect to τ_2.

Using the same technique we can show that (X, τ_1, τ_2) is τ_2 locally compact with respect to τ_1. □

Definition 2.17. ([2]) If U is a pairwise open cover of (X, τ_1, τ_2), then the pairwise open cover E of (X, τ_1, τ_2) is said to be a parallel refinement of U if $E \cap \tau_i$ refines $U \cap \tau_i$, $i = 1, 2$.

Definition 2.18. ([2]) A refinement E of a pairwise open cover U of (X, τ_1, τ_2) is said to be pairwise locally finite if for each point x of X, there is a τ_1-open or τ_2-open set U containing x and intersect finitely many member of E.

Definition 2.19. ([2]) A bitopological space (X, τ_1, τ_2) is said to be pairwise paracompact if every pairwise open cover of X has pairwise open locally finite parallel refinement.

Remark 2.1. Let X be a pairwise paracompact, pairwise Hausdorff. Then every pairwise closed subset A of X has the property P which says: every pairwise open cover of A (in X) has a pairwise open parallel refinement which is locally finite in X.

The proof follows easily.

Remark 2.2. Every subset A of a bitopological space which has the property P is pairwise paracompact.

Theorem 2.10. If X is pairwise Hausdorff space such that, every pairwise closed subset A of X has the property P, then X is pairwise paracompact.

Proof. Let $U = \{U_\alpha : \alpha \in \Delta\}$ be pairwise open cover of a bitopological space (X, τ_1, τ_2). Let U_{a_0} be fixed element of U, then $X \setminus U_{a_0}$ is pairwise closed hence $X \setminus U_{a_0}$ has the property P. Since U is a pairwise open cover of $X \setminus U_{a_0}$, it has a pairwise open parallel locally finite refinement, say E. Then $E \cup \{U_\alpha\}$ is a pairwise open parallel locally finite refinement of U. Hence X is pairwise paracompact. □

Definition 2.20. A bitopological space (X, τ_1, τ_2) is said to be pairwise σ-compact if, and only if, X is a countable union of pairwise compact subset.
Theorem 2.11. A pairwise σ-compact is properly hereditary property.

Proof. Let $x \in X$. Let $Y = X \setminus \{x\}$. Since every proper subset of X is pairwise σ-compact then there exist a pairwise compact subset A_1, A_2, A_3, \ldots in Y, and hence in X such that $\bigcup_{i=1} A_i = Y$. So $\{x\}, A_1, A_2, A_3, \ldots$ are pairwise compact subset in X such that $\bigcup_{i=1} A_i \cup \{x\} = X$. □

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF JORDAN
AMMAN-JORDAN.
Email address: bakrkasasbeh0111@gmail.com

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF JORDAN
AMMAN-JORDAN.
Email address: zahdeib@ju.edu.jo