ON GENERALIZATIONS OF 2-ABSORBING PRIMARY IDEALS IN SEMIGROUPS

Pairote Yiarayong

ABSTRACT. Let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function where $\mathcal{I}(S)$ is a set of all ideals of a semigroup. We extend the concept of primary and 2-absorbing ideals in semigroups to the context of ϕ-2-absorbing primary ideals. We say that a proper ideal A of a semigroup S is a ϕ-2-absorbing primary ideal if for each $a, b, c \in S$ with $abc \in A - \phi(A)$ implies that $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. The aim of this paper is to investigate the concept of ϕ-2-absorbing primary ideals in semigroups. Finally, we obtain sufficient conditions of a 2-absorbing primary ideal in order to be rephrased a ϕ-2-absorbing primary ideal in a semigroup.

1. ϕ-2-ABSORBING PRIMARY IDEALS

In this section, we introduce the concept of ϕ-2-absorbing primary ideals in semigroups and give its characterizations corresponding to ϕ-2-absorbing primary ideals in semigroups.

Let A be a subset of a semigroup S. Then, the radical (see [1]) of A is defined as $\sqrt{A} = \{a \in S : a^n \in A \text{ for some positive integer } n\}$.

Definition 1.1. Let S be a semigroup and let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function where $\mathcal{I}(S)$ be the set of all ideals of S. A proper ideal A of S is called a ϕ-2-absorbing primary ideal if for each $a, b, c \in S$ with $abc \in A - \phi(A)$, then $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$.

2020 Mathematics Subject Classification. 13A15, 13F05.

Key words and phrases. semigroup, ideal, 2-absorbing primary ideal, ϕ-2-absorbing primary ideal.
We now present the following example satisfying above definition.

Example 1. Let $S = \{a, b, c, d, e\}$ be a semigroup with following multiplication given by

<table>
<thead>
<tr>
<th>\circ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

It is easy to see that $\{a, b, d\}$ is a ϕ-2-absorbing primary ideal of a semigroup S.

Remark 1.1. It is easy to see that every 2-absorbing primary ideal of a semigroup S is a ϕ-2-absorbing primary ideal of S.

The following example shows that the converse of Remark 1.1 is not true.

Example 2. Let $S = \mathbb{Z}^+$. Consider the proper ideal $P = 30\mathbb{Z}^+$ of the semigroup S. Define $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ by $\phi(A) = A$ for every $A \in \mathcal{I}(S)$. It is easy to see that P is a ϕ-2-absorbing primary ideal of S. Notice that $2 \cdot 3 \cdot 5 \in P$, but $2 \cdot 3 \not\in \sqrt{P}$ and $3 \cdot 5 \not\in \sqrt{P}$. Therefore P is not a 2-absorbing primary ideal of S.

Let S be a semigroup and let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function. Since $A - \phi(A) = A - (A \cap \phi(A))$ for all $A \in \mathcal{I}(S)$, without loss of generality, we will assume that $\phi(A) \subseteq A$. Throughout this paper, as it is noted earlier, if ϕ is a function, then we always assume that $\phi(A) \subseteq A$.

Theorem 1.1. Let A be a non empty subset of a commutative semigroup S. Then the following properties hold.

1. If A is an ideal of S, then \sqrt{A} is an ideal of S containing A.
2. $\sqrt{A} = \sqrt{\sqrt{A}}$.
3. For each ϕ-2-absorbing primary ideal A of S if $\sqrt{\phi(A)} \subseteq \phi\left(\sqrt{A}\right)$, then \sqrt{A} is a ϕ-2-absorbing primary ideal of S.
4. For each element s of $S - \sqrt{A}$ if A is a ϕ-2-absorbing primary ideal of S such that $\sqrt{\phi(A)} \subseteq \phi\left(\sqrt{A}\right)$, then $(\sqrt{A} : s)$ is a ϕ-2-absorbing primary ideal of S with $\left(\phi(\sqrt{A}) : s\right) \subseteq \phi\left(\sqrt{A} : s\right)$.

Proof.
1. Assume that A is an ideal of S. It is easy to see that, $A \subseteq \sqrt{A}$. Let a and s be any elements of S such that $a \in \sqrt{A}$. Then we have, $a^n \in A$ for some positive integer n, which implies that $(sa)^n = s^na^n \in s^nA \subseteq A$. Therefore, $sa \in \sqrt{A}$ and hence \sqrt{A} is an ideal of S containing A.

2. Assume that A is a subset of S. Obviously, $\sqrt{A} \subseteq \sqrt{\sqrt{A}}$. On the other hand, let $x \in \sqrt{\sqrt{A}}$. Then we have, $x^n \in \sqrt{A}$ for some positive integer n, which means that $x^{nm} \in A$ for some positive integer m. Therefore, $x \in \sqrt{A}$ and hence $\sqrt{A} = \sqrt{\sqrt{A}}$.

3. Assume that A is an ideal of S. Then by part 1, \sqrt{A} is an ideal of S. Let a, b and c be any elements of S such that $abc \in \sqrt{A} - \phi(\sqrt{A})$. Thus we have, $abc \notin \phi(\sqrt{A})$ and $(abc)^n \in A$ for some positive integer n. Since $\sqrt{\phi(A)} \subseteq \phi(\sqrt{A})$, we have $(abc)^n \notin \phi(A)$, which implies that $(abc)^n \notin A - \phi(A)$. In fact, since A is a ϕ-2-absorbing primary ideal of S, we have $(ab)^n \in A$ or $(bc)^n \in \sqrt{A}$ or $(ac)^n \in A$. Therefore $ab \in \sqrt{A}$ or $bc \in \sqrt{\sqrt{A}}$ or $ac \in \sqrt{A}$ and hence $\sqrt{\sqrt{A}}$ is a ϕ-2-absorbing primary ideal of S.

4. Let a, b, c and s be any elements of S such that $abc \in (\sqrt{A} : s) - \phi(\sqrt{A} : s)$. Since $(\phi(\sqrt{A}) : s) \subseteq \phi(\sqrt{A} : s)$, we have $ab(cs) \in \sqrt{A} - \phi(\sqrt{A})$. Then by parts 2 and 3, $ab \in \sqrt{A}$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$, which implies that $ab \in (\sqrt{A} : s)$ or $bc \in \sqrt{(\sqrt{A} : s)}$ or $ac \in \sqrt{(\sqrt{A} : s)}$. Consequently, $(\sqrt{A} : s)$ is a ϕ-2-absorbing primary ideal of S.

In the light of the definition of ϕ-2-absorbing primary ideal in commutative semigroups, we can obtain the following properties.

Theorem 1.2. Let S be a commutative semigroup and let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function. If A is a ϕ-2-absorbing primary ideal of S such that \sqrt{A} is a primary ideal of S, then $(A : s)$ is a ϕ-2-absorbing primary ideal of S for every $s \in S - \sqrt{A}$ with $(\phi(A) : s) \subseteq \phi(A : s)$.

Proof. Let a, b, c and s be any elements of S such that $abc \in (A : s) - \phi(A : s)$. Since $(\phi(A) : s) \subseteq \phi(A : s)$, we have $a(bc)s \in A - \phi(A)$. In fact, since A is a ϕ-2-absorbing primary ideal of S, we have $abc \in A$ or $bc \in \sqrt{A}$ or $as \in \sqrt{A}$.

If $bc \in \sqrt{A}$ or $as \in \sqrt{A}$, then $bc \in \sqrt{(A : s)}$ or $a \in \sqrt{(A : s)}$, since \sqrt{A} is a primary ideal of S and $s \in S - \sqrt{A}$. Next, if $abc \in A$, then $abc \in A - \phi(A)$. Therefore, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. In any case, we have $ab \in (A : s)$ or
\(bc \in \sqrt{(A : s)}\) or \(ac \in \sqrt{(A : s)}\). Consequently, \((A : s)\) is a \(\phi\)-2-absorbing primary ideal of \(S\).

In the following result, we give an equivalent definition of \(\phi\)-2-absorbing primary ideals in a commutative semigroup.

Theorem 1.3. Let \(\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}\) be a function. The following conditions are equivalent:

1. \(A\) is a \(\phi\)-2-absorbing primary ideal of \(S\).
2. For each elements \(a\) and \(b\) of \(S\) if \(ab \in S - A\), then \((A : ab) \subseteq (\phi(A) : ab) \cup \sqrt{(\sqrt{A} : a^n)} \cup \sqrt{(\sqrt{A} : b^n)}\) for some positive integer \(n\).

Proof. First assume that (1) holds. Let \(a, b\) and \(c\) be any elements of \(S\) such that \(c \in (A : ab)\). Then we have, \(abc \in A\). If \(abc \notin \phi(A)\), then \(abc \notin A - \phi(A)\). Since \(A\) is a \(\phi\)-2-absorbing primary ideal of \(S\), we have \(ab \in A\) or \(bc \in \sqrt{A}\) or \(ac \in \sqrt{A}\).

By assumption, \(c \in \sqrt{(\sqrt{A} : a^n)}\) or \(c \in \sqrt{(\sqrt{A} : b^n)}\) for some positive integer \(n\) that is, \(c \in \sqrt{(\sqrt{A} : a^n)}\) or \(c \in \sqrt{(\sqrt{A} : b^n)}\) \(\subseteq (\phi(A) : ab) \cup \sqrt{(\sqrt{A} : a^n)} \cup \sqrt{(\sqrt{A} : b^n)}\).

If \(abc \in \phi(A)\), then \(c \in (\phi(A) : ab) \subseteq (\phi(A) : ab) \cup \sqrt{(\sqrt{A} : a^n)} \cup \sqrt{(\sqrt{A} : b^n)}\).

Consequently, \((A : ab) \subseteq (\phi(A) : ab) \cup \sqrt{(\sqrt{A} : a^n)} \cup \sqrt{(\sqrt{A} : b^n)}\).

Conversely, assume that (2) holds. Let \(a, b\) and \(c\) be any elements of \(S\) such that \(abc \in A - \phi(A)\). Then we have, \(c \in (A : ab)\) and \(c \notin (\phi(A) : ab)\). If \(ab \in A\), then there is nothing to prove. If \(ab \notin A\), then \((A : ab) \subseteq (\phi(A) : ab) \cup \sqrt{(\sqrt{A} : a^n)} \cup \sqrt{(\sqrt{A} : b^n)}\) for some positive integer \(n\). Since \(c \in (A : ab)\) and \(c \notin (\phi(A) : ab)\), we have \(c \in \sqrt{(\sqrt{A} : a^n)} \cup \sqrt{(\sqrt{A} : b^n)}\). Therefore, \(bc \in \sqrt{A}\) or \(ac \in \sqrt{A}\) and hence \(A\) is a \(\phi\)-2-absorbing primary ideal of \(S\).

The next theorem gives the relationships between 2-absorbing primary ideals and \(\phi\)-2-absorbing primary ideals of a semigroup \(S\).

Theorem 1.4. Let \(\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}\) be a function and let \(\phi(A)\) be a 2-absorbing primary ideal of a semigroup \(S\). Then \(A\) is a \(\phi\)-2-absorbing primary ideal of \(S\) if and only if \(A\) is a 2-absorbing primary ideal of \(S\).

Proof. First assume that \(A\) is a 2-absorbing primary ideal of \(S\). Obviously, \(A\) is a \(\phi\)-2-absorbing primary ideal of \(S\).
Conversely, assume that A is a ϕ-2-absorbing primary ideal of S. Let a, b and c be any elements of S such that $abc \in A$. If $abc \notin \phi(A)$, then $abc \in A - \phi(A)$. By assumption, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. Now if $abc \in \phi(A)$, then $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. In any case, we have A is a ϕ-2-absorbing primary ideal of S. □

In the following we shall introduce the notion of ϕ-2-absorbing primary triple zero of a ϕ-2-absorbing primary ideal A in a semigroup S.

Let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let A be a ϕ-2-absorbing primary ideal of a semigroup S a triple $(a, b, c), a, b, c \in S$ is a ϕ-2-absorbing primary triple zero if

1. $abc \in \phi(A)$
2. $ab \notin A$ and $bc \notin \sqrt{A}$ and $ac \notin \sqrt{A}$.

Remark 1.2. Note that a proper ideal A of a semigroup S is a ϕ-2-absorbing primary ideal of S that is not a 2-absorbing primary ideal of S if and only if A has a ϕ-2-absorbing primary triple-zero (a, b, c) for some $a, b, c \in S$.

Now we investigate the ϕ-2-absorbing primary triple zero of a ϕ-2-absorbing primary ideal A in a semigroup S.

Theorem 1.5. Let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let A be a ϕ-2-absorbing primary ideal of a semigroup S. For each elements a, b and c of S if (a, b, c) is a ϕ-2-absorbing primary triple zero of A, then the following statements hold:

1. $abA \subseteq \phi(A)$
2. $aAc \subseteq \phi(A)$
3. $A^2c \subseteq \phi(A)$
4. $aA^2 \subseteq \phi(A)$.

Proof.

1. Suppose that $abA \not\subseteq \phi(A)$. Then there exists an element d of A such that $abd \notin \phi(A)$. Thus we have, $\{abc\} \cup \{abd\} \not\subseteq \phi(A)$, which implies that $\{ab\} (\{c\} \cup \{d\}) \not\subseteq A - \phi(A)$. Since A is a ϕ-2-absorbing primary ideal of S, we have $ab \in A$ or $b (\{c\} \cup \{d\}) \subseteq \sqrt{A}$ or $a (\{c\} \cup \{d\}) \subseteq \sqrt{A}$. Therefore, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$, which is a contradiction. Consequently, $abA \subseteq \phi(A)$.

2. Suppose that \(aAc \not\subseteq \phi(A) \). Then there exists an element \(r \) of \(A \) such that \(arc \not\subseteq \phi(A) \). Since \(r \in A \), we have \(a\{(b) \cup \{r\}\}c \subseteq A \), which implies that \(a\{(b) \cup \{r\}\}c \subseteq A - \phi(A) \). In fact, since \(A \) is a \(\phi \)-2-absorbing primary ideal of \(S \), we have \(a\{(b) \cup \{r\}\}c \subseteq \sqrt{A} \) or \(ac \in \sqrt{A} \). Thus, \(ab \in A \) or \(bc \in \sqrt{A} \) or \(ac \in \sqrt{A} \), which is a contradiction. Consequently, \(aAc \subseteq \phi(A) \).

3. The proof is similar to part 2.

4. Assume that \(A^2c \not\subseteq \phi(A) \). Then there exist elements \(r, s \) of \(A \) such that \(rsc \not\subseteq \phi(A) \). Then by parts 2 and 3, \(\{abc\} \cup \{rbc\} \cup \{asc\} \cup \{rsc\} \not\subseteq \phi(A) \), which implies that \(\{(a) \cup \{r\}\} \cup \{s\} \subseteq A - \phi(A) \). In fact, since \(A \) is a \(\phi \)-2-absorbing primary ideal of \(S \), we have \(\{(a) \cup \{r\}\} \cup \{s\} \subseteq A \) or \(\{(b) \cup \{s\}\} \subseteq \sqrt{A} \) or \(\{(a) \cup \{r\}\} \subseteq \sqrt{A} \). Therefore, \(ab \in A \) or \(bc \in \sqrt{A} \) or \(ac \in \sqrt{A} \), which is a contradiction. Consequently, \(A^2c \subseteq \phi(A) \).

5. Suppose that \(aA^2 \not\subseteq \phi(A) \). Then there exist elements \(r, s \) of \(A \) such that \(ars \not\subseteq \phi(A) \). Therefore by parts 1 and 2 we conclude that \(\{abc\} \cup \{abs\} \cup \{arc\} \cup \{ars\} \not\subseteq \phi(A) \), which implies that \(a\{(b) \cup \{r\}\} \cup \{s\} \subseteq A - \phi(A) \). In fact, since \(A \) is a \(\phi \)-2-absorbing primary ideal of \(S \), we have \(a\{(b) \cup \{r\}\} \cup \{s\} \subseteq \sqrt{A} \) or \(\{(b) \cup \{s\}\} \subseteq \sqrt{A} \) or \(\{(a) \cup \{r\}\} \subseteq \sqrt{A} \). Thus, \(ab \in A \) or \(bc \in \sqrt{A} \) or \(ac \in \sqrt{A} \), which is a contradiction. Consequently, \(aA^2 \subseteq \phi(A) \).

As a simple consequence of Theorem 1.5 we give the following result.

Corollary 1.1. Let \(\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\} \) be a function and let \(A \) be a \(\phi \)-2-absorbing primary ideal of a commutative semigroup \(S \). For every \(a, b, c \in S \) if \((a, b, c)\) is a \(\phi \)-2-absorbing primary triple zero of \(A \), then the following statements hold:

1. \(abA \subseteq \phi(A) \) and \(acA \subseteq \phi(A) \) and \(bcA \subseteq \phi(A) \);
2. \(aA^2 \subseteq \phi(A) \) and \(bA^2 \subseteq \phi(A) \) and \(cA^2 \subseteq \phi(A) \).

Now we arrive at one of our main theorem.

Theorem 1.6. Let \(\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\} \) be a function and let \(A \) be a \(\phi \)-2-absorbing primary ideal of a commutative semigroup \(S \). Suppose that \(B \) is an ideal of \(S \) and \(a, b \in S \) such that \(abB \subseteq A \). If \((a, b, c)\) is not a \(\phi \)-2-absorbing primary triple zero of \(A \), \(\sqrt{A} \) for every \(c \in B \), then \(ab \in \sqrt{A} \) or \(bB \subseteq \sqrt{A} \) or \(ab \subseteq \sqrt{A} \).

Proof. Suppose that \(ab \not\subseteq \sqrt{A} \) and \(bB \not\subseteq \sqrt{A} \) and \(ab \not\subseteq \sqrt{A} \). Then there are exist elements \(d_1, d_2 \in B \) such that \(bd_1 \not\subseteq \sqrt{A} \) and \(ad_2 \not\subseteq \sqrt{A} \). If \(abd_1 \not\subseteq \phi(A) \), then \(abd_1 \in A - \phi(A) \). By assumption, \(ad_1 \in \sqrt{A} \) or \(bd_1 \in \sqrt{A} \). Next, let
$abd_1 \in \phi(A)$. By hypothesis, $ad_1 \in \sqrt{A}$ or $bd_1 \in \sqrt{A}$. Now if $abd_2 \notin \phi(A)$, then $abd_2 \in A - \phi(A)$. By the given hypothesis, $ad_2 \in \sqrt{A}$ or $bd_2 \in \sqrt{A}$. So let $abd_2 \in \phi(A)$. By given hypothesis, $ad_2 \in \sqrt{A}$ or $bd_2 \in \sqrt{A}$. In any case, we have $bd_1, bd_2 \in \sqrt{A}$. Since $abB \subseteq A$, we have $ab(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$. If $ab(\{d_1\} \cup \{d_2\}) \not\subseteq \phi(\sqrt{A})$, then $ab(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A} - \phi(\sqrt{A})$. Now by our hypothesis, $a(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$ or $b(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$, which implies that $bd_1, ad_2 \in \sqrt{A}$, which is a contradiction. Assume that $ab(\{d_1\} \cup \{d_2\}) \subseteq \phi(\sqrt{A})$. From our hypothesis, $a(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$ or $b(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$. Clearly, $bd_1 \in \sqrt{A}$ or $ad_2 \in \sqrt{A}$, which again is a contradiction. Hence $ab \in \sqrt{A}$ or $bB \subseteq \sqrt{A}$ or $aB \subseteq \sqrt{A}$.

\section*{REFERENCES}

\textsc{Department of Mathematics}
\textsc{Faculty of Science and Technology}
\textsc{Pibulsongkram Rajabhat University}
\textsc{Phitsanulok 65000, Thailand}
\textit{Email address}: pairote0027@hotmail.com