UNIQUE METRO DOMINATION OF POWER OF PATHS

Kishori P. Narayankar, Denzil Jason Saldanha\(^1\), and John Sherra

\textbf{Abstract.} A dominating set \(D\) of \(G\) which is also a resolving set of \(G\) is called a metro dominating set. A metro dominating set \(D\) of a graph \(G(V,E)\) is a unique metro dominating set (in short an UMD-set) if \(|N(v) \cap D| = 1\) for each vertex \(v \in V - D\) and the minimum of cardinalities of an UMD-sets of \(G\) is the unique metro domination number of \(G\) denoted by \(\gamma_{\mu\beta}(G)\). In this paper we determine unique metro domination number of power of paths.

1. Introduction

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices \(u\) and \(v\) in a graph \(G\) is called the distance between \(u\) and \(v\) and is denoted by \(d(u, v)\). For a vertex \(v\) of a graph, \(N(v)\) denote the set of all vertices adjacent to \(v\) and is called open neighborhood of \(v\). Similarly, the closed neighborhood of \(v\) is defined as \(N[v] = N(v) \cup \{v\}\).

Let \(G(V,E)\) be a graph. For each ordered subset \(S = \{v_1,v_2,\ldots,v_k\}\) of \(V\), each vertex \(v \in V\) can be associated with a vector of distances denoted by \(\Gamma(v/S) = (d(v_1,v),d(v_2,v),\ldots,d(v_k,v))\). The set \(S\) is said to be a resolving set of \(G\) if \(\Gamma(v/S) \neq \Gamma(u/S)\) for every \(u,v \in V - S\), see [1]. A resolving set of minimum cardinality is a metric basis and cardinality of a metric basis is the metric dimension of \(G\), see [2]. The k-tuple, \(\Gamma(v/S)\) associated to the vertex

\(^1\)corresponding author

2020 Mathematics Subject Classification. 05C69.

Key words and phrases. Domination, metric dimension, metro domination, unique metro domination.
$v \in V$ with respect to a metric basis S, is referred as a \textit{code generated by S} for that vertex v. If $\Gamma(v/S) = (c_1, c_2, \ldots, c_k)$, then $c_1, c_2, c_3, \ldots, c_k$ are called components of the code of v generated by S and in particular $c_1, 1 \leq i \leq k$, is called i^{th}-component of the code of v generated by S.

A dominating set D of a graph $G(V, E)$ is the subset of V having the property that for each vertex $v \in V - D$, there exists a vertex $u \in D$ such that uv is in E, see [3]. A dominating set D of G which is also a resolving set of G is called a \textit{metro dominating set}.

A metro dominating set D of a graph $G(V, E)$ is a \textit{unique metro dominating set} (in short an \textit{UMD set}) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$. Generally, if $|N(v) \cap D| = k$ for each vertex $v \in V - D$, $k \geq 1$, such a metro dominating set D is called a \textit{Smarandachely distance k dominating set} (Smarandachely k DD-sets of G) and the minimum of cardinalities of the Smarandachely DD-sets of G is the number of Smarandachely k UDD-sets of G, denoted by $\gamma_{S_{\mu \beta}}^k(G)$. Particularly, if $k = 1$, i.e., the \textit{unique metro domination number of G} denoted by $\gamma_{\mu \beta}(G)$, see [4–6].

2. Main Results

Take $P_n, n > k$. If $k < i \leq n - k$, join v_i to $v_{i-2}, v_{i-3}, \ldots, v_{i-k}$ and v_{i+2}, \ldots, v_{i+k}. If $i > n - k$, then join v_i to $v_{i-2}, v_{i-3}, \ldots, v_{i-k}$ and all $v_j, j > i + 1$. Similarly if $i \leq k$, then join v_i to $v_j, j < i - 1$ and to v_{i+2}, \ldots, v_{i+k}. The resulting graph is called P^k_n.

If $k < i \leq n - k$, then v_i dominates $v_i, v_{i-1}, v_{i-2}, \ldots, v_{i-k}, v_{i+1}, v_{i+2}, \ldots, v_{i+k}$. If $|i - j| \leq 2k + 1$, then vertex $v_{i+1}, v_{i+2}, \ldots, v_{j-1}$ are dominated by v_i and v_j.

The set $D = \{v_1, v_6, v_9\}$ is a dominating set in Figure 1 for P^2_9. It is also a metro dominating set. Note that v_7 is dominated by v_6 and v_9. Hence D is not a UMD set.

The set $D = \{v_3, v_8\}$ is a dominating set for P^2_9 in Figure 2. All vertices are dominated uniquely by $\{v_3, v_8\}$. But code generated by D to v_4 and v_5 is same. Hence $\{v_3, v_8\}$ does not resolve the vertex set V of P^2_9 and hence D is not a UMD set. If $v_1 \in D$, it dominates $v_2, v_3, \ldots, v_{k+1}$. If $v_i \in D$ and if $i < 2k + 2$, then v_{k+1} is dominated by v_1 and v_i. If $i > 2k + 2$, then v_{k+2} is not dominated. Further if $i = 2k + 2$ then the vertices $v_2, v_3, \ldots, v_{i-1}$ are uniquely dominated.

A vertex in P^k_n can dominate a maximum of $2k + 1$ vertices.
Lemma 2.1. If D is a minimal dominating set then $|D| \geq \left\lceil \frac{n}{2k+1} \right\rceil$.

However if $n = k + 1 + (2k + 1)p$, $(p \in \mathbb{N})$, then $D = \{v_{k+1}, v_{3k+2}, v_{5k+3}, \ldots v_{n-k}\}$ is a minimal dominating set and $|D| = \frac{n}{2k+1}$. Hence we have

Lemma 2.2. When $n = k + 1 + (2k + 1)p$, $p \in \mathbb{N}$, the domination number $\gamma(P_n^k) = \frac{n}{2k+1} = \left\lceil \frac{n}{2k+1} \right\rceil$.

Observe that when $n = (k + 1) + (2k + 1)p$, $p \in \mathbb{N}$, $D = \{v_{k+1}, v_{3k+2}, \ldots v_n\}$ dominates $V - D$ uniquely.

For any v_i and v_j,

$$d(v_i, v_j) = \left\lceil \frac{|i - j|}{k} \right\rceil.$$

Consider $1 \leq i < j \leq n - k$, such that $j - i \equiv 0 \pmod{k}$. Then we get $d(v_i, v_{j+1}) = d(v_i, v_{j+2}) = \ldots = d(v_i, v_{j+k}) = \frac{j - i + k}{k}$.

If $k + 1 \leq t < i < j \leq n - k$, $2i = j + t$, $j - i \equiv 0 \pmod{k}$ and $i - t \equiv 0 \pmod{k}$, then $d(v_i, v_{i-1}) = d(v_i, v_{i-2}) = \ldots = d(v_i, v_{i-k}) = d(v_i, v_{i+1}) = d(v_i, v_{j+1}) = \ldots = d(v_i, v_{j+k}) = \frac{j - t + 2k}{2k}$.

Figure 1. P_9^2

Figure 2. P_9^2
Now consider the unique dominating set \(D = \{v_{k+1}, v_{3k+2}, \ldots\} \) for \(P_n^m \). The vertices \(v_i \) and \(v_j \in D, i = (k + 1) + (2k + 1)l \) and \(j = (k + 1) + (2k + 1)(l + 1) \), generate the same code to all the vertices in \(U = \{v_{i+1}, v_{i+2}, \ldots, v_{i+k}\} \) and the same code to all the vertices in \(W = \{v_{i+k+1}, v_{i+k+2}, \ldots, v_{j-1}\} \).

For example, \(\{v_{k+1}, v_{3k+2}\} \) generates the same code \((1, 2)\) for \(v_{k+2}, v_{k+3}, \ldots, v_{2k+1} \) and same code \((2, 1)\) for \(v_{2k+2}, v_{2k+3} \ldots v_{3k+1}. \)

Take \(v_h \in D, h = (k + 1) + (2k + 1)(l + 2). \) Then \(\frac{|h - i|}{k} = \frac{4k + 2}{k} = 4 + \frac{2}{k}. \)

Hence \(d(v_h, v_i) = \left\lceil 4 + \frac{2}{k} \right\rceil = 5 \) and \(d(v_h, v_{i+1}) = \left\lceil 4 + \frac{1}{k} \right\rceil = 5. \)

All other vertices of \(U \) will have the same distance 4 from \(v_h. \)

Now \(|h - (i + k + 1)| = |3k + 1|. \) Therefore \(d(v_h, v_{i+k+1}) = \left\lceil \frac{3k + 1}{k} \right\rceil = \left\lceil 3 + \frac{1}{k} \right\rceil = 4 \)

and all other vertices of \(W \) will have the same distance 3 from \(v_h. \) Hence code generated by \(\{v_i, v_j, v_k\} \) will be the same for vertices in \(U - \{v_{i+1}\} \) and is the same for vertices in \(W - \{v_{i+k+1}\}. \)

For example, the code generated by \(\{v_{k+1}, v_{3k+2}, v_{5k+3}\} \) to \(v_{k+2} \) is \((1,2,5)\) and to \(v_{2k+2} \) is \((2,1,4)\) where as same code \((1,2,4)\) is generated to \(v_{k+3}, \ldots, v_{2k+1}, \)

same code \((2,1,3)\) is generated to \(v_{2k+3}, \ldots, v_{3k+1}. \)

Now take \(v_h \in D, h = (k + 1) + (2k + 1)(l - 1). \) Then \(\frac{|h - i|}{k} = \frac{2k + 1}{k} = 2 + \frac{1}{k} \) and \(\frac{|h - (i + k)|}{k} = 3 + \frac{1}{k}. \) Therefore \(d(v_h, v_i) = 3 = d(v_h, v_{i+1}) = \ldots = d(v_h, v_{i+k-1}) \)

and \(d(v_h, v_{i+k}) = 4. \) Further \(\frac{|h - (j - 1)|}{k} = \frac{|4k + 1|}{k} = 4 + \frac{1}{k}, \)

and therefore \(d(v_h, v_{j-1}) = 5 \) and \(d(v_h, v_{j-2}) = 4 = d(v_h, v_{j-3}) = \ldots = d(v_h, v_{i+k+1}). \) Therefore code generated by \(\{v_i, v_j, v_h\} \) will be same for vertices in \(U - \{v_{i+k}\} \) which is different from the code of \(v_{i+k} \) and code generated will be the same for vertices in \(W - \{v_{i+k+1}\}, \) which is different from the code of \(v_{i+k+1}. \)

Every vertex of \(D, \) when added to \(\{v_i, v_j\}, \) it produces different code to exactly one vertex of \(U \) and exactly one vertex of \(W. \) Hence to resolve all the vertices between \(v_i \) and \(v_j, \) we require \(k - 1 \) vertices of \(D. \) Therefore minimum \(|D| = k + 1. \) For each \(l, \) \(0 \leq l \leq k + 1, \) there are \(2k \) vertices between \(v_i \) and \(v_j. \)

Also we have \(v_1, v_2, \ldots, v_k. \) Thus to resolve \(V - D, \) it is necessary to have at least \(k(2k) + (k + 1) + k = 2k^2 + 2k + 1 \) vertices in \(V. \) Thus we have

Lemma 2.3. If \(n = 2k^2 + 2k + 1, \) then \(D = \{v_{k+1}, v_{3k+2}, \ldots\} \) is a unique metro dominating set.
Further we observe, that if \(n \geq 2k^2+2k+1 \), and \((2k+1)p-k \leq n \leq (2k+1)p-1 \), then \(D = \{v_{k+1}, v_{3k+2}, \ldots, v_{(2k+1)p-k}\} \) is a UMD set.

Also if \(n \geq 2k^2+2k+1 \) and \((2k+1)p-2k \leq n < (2k+1)p - k \), then \(D = \{v_1, v_{2k+2}, v_{4k+3}, \ldots, v_{(2k+1)p-2k}\} \) is a UMD set.
In any case $|D| = p = \left\lceil \frac{n}{2k+1} \right\rceil$. Hence we have the following theorem.

Theorem 2.1. $\gamma_{\mu \beta}(P^k_n) = \begin{cases} \left\lceil \frac{n}{2k+1} \right\rceil, & \text{for } n \geq 2k^2 + k + 1 \\ n, & \text{for } n < 2k^2 + k + 1 \end{cases}$

REFERENCES

DEPARTMENT OF MATHEMATICS
MANGALORE UNIVERSITY
MANGALAGANGOTHRI, MANGALORE-574199, INDIA
Email address: kishori-pn@yahoo.co.in

DEPARTMENT OF MATHEMATICS
MANGALORE UNIVERSITY
MANGALAGANGOTHRI, MANGALORE-574199, INDIA
Email address: denzil53@gmail.com

DEPARTMENT OF MATHEMATICS
ST ALOYSIUS COLLEGE (AUTONOMOUS)
MANGALORE-575003, INDIA
Email address: johnsherra@gmail.com