TOPOLOGICAL GROUPS: VIRTUE OF PRE-OPEN SETS

P. Gnanachandra1 and A. Muneesh Kumar

\textsc{Abstract.} In this paper, we introduce notions of p-topological group and p-irresolute topological group which are generalizations of the notion topological group. We discuss the properties of p-topological group with illustrated examples. Also, we prove that translation and inversion in p-topological group are p-homeomorphism.

1. INTRODUCTION

Topological group is a mathematical structure on a set which is defined by underlying two distinguished structures on that set namely group and a topology. A topological group in modern notion is defined as, a group binded with a topology such that the binary operations are continuous. Based on this, some generalizations of topological groups such as paratopological groups, semitopological groups and quasitopological groups are defined. In a finite group, all the above mentioned generalizations coincide [7]. The concepts of S-topological group and s-topological group were discussed in [1] and the theory of almost topological group was initiated in [5]. In this paper, we discuss some more

1corresponding author

2020 Mathematics Subject Classification. 40B05, 33E99.

Key words and phrases. Topological group, p-topological group, p-irresolute topological group, pre -connectedness.

Submitted: 27.12.2020; Accepted: 06.01.2021; Published: 20.01.2021.
generalizations which defined based on pre-open sets and present a new generalization of topological group called p-topological group.

2. Preliminaries

Throughout this paper, the pair (A, τ) denotes a group A together with a topology τ. For any $g \in A$, g^{-1} denotes the inverse of g in A. Let $S, T \subseteq A$, then $ST = \{s.t : s \in S, t \in T\}$. The notions pre-open, pre-closed and pre-continuous map follows [6]. For a set C on a topological space X, the notions pre-interior and pre-closure are denoted by $\text{pint}(C)$ and $\text{pcl}(C)$ follows [6]. For a set R, the power set of R is denoted by $\mathcal{P}(R)$ and for a topology τ on A, the collection of open sets, closed sets, pre-open sets are denoted by $O(A)$, $C(A)$ and τ_p.

3. p-Topological Group

We introduce the concept of p-topological group and investigate its basic properties with illustrated examples in this section.

Definition 3.1. A pair (A, τ) is said to be p-topological group, for $m, n \in A$:
- for each open neighbourhood K of mn, \exists pre-open neighbourhoods M of m and N of $n \ni MN \subseteq K$
- for each open neighbourhood S of g^{-1} \exists pre-open neighbourhood T of $g \ni T^{-1} \subseteq S$.

In other words, multiplication and inversion mappings are pre-continuous.

Example 3.2. Consider the group $A = (\mathbb{Z}_3, \oplus)$ with topology $\tau = \{\emptyset, \{1, 2\}, A\}$. For the topology τ, $\tau_p = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{0, 1\}, \{0, 2\}, A\}$. Then (A, τ) is a p-topological group. Finite group with indiscrete topology is the only connected topological group. But here, the above mentioned p-topological group is connected.

Proposition 3.3. Let A be a p-topological group and $S \in O(A)$. Then for any $g \in A$, gS and Sg are pre-open.

Proof. Let $h \in gS$, then $h = gs$ for some $s \in S$. Now, $s = g^{-1}h$ and by the pre-continuity of multiplication \exists pre-open sets M and N of g^{-1} and $h \ni MN \subseteq S$ which implies $h \in N \subseteq gS$. Hence gS is pre-open. Similarly we can prove that Sg is pre-open. \qed
Corollary 3.4. Let $T \in C(A)$ in a p-topological group A. Then for any $a \in A$, aT and Ta are pre-closed.

Proposition 3.5. Let A be a p-topological group. Then $D \in \mathcal{T}_p$ if and only if $D^{-1} \in \mathcal{T}_p$.

Proof. Let $D \in \mathcal{T}_p$, then $\exists M \in O(A) \ni D \subseteq M \subseteq cl(D)$. Now, $D^{-1} \subseteq E^{-1} \subseteq (cl(D))^{-1}$. Since inversion is pre-continuous, we have D^{-1} is pre-open and $(cl(D))^{-1}$ is pre-closure of D^{-1}. By using that, for a set C, $pcl(C) \subseteq cl(C)$ [4], we have $D^{-1} \subseteq M^{-1} \subseteq int(cl(M^{-1})) \subseteq (cl(M))^{-1} \subseteq cl(M^{-1})$. Hence $\exists int(cl(M^{-1})) \in O(A) \ni D^{-1} \subseteq int(cl(M^{-1})) \subseteq cl(D^{-1})$ and so D^{-1} is pre-open. Proof of the converse is similar. □

Theorem 3.6. Let S and R be p-topological groups with R is submaximal and g be a pre-irresolute homomorphism at identity e_S. Then g is pre-irresolute.

Proof. Let $n \in S$ and $M \in \mathcal{T}_p$ in R containing $g(n) = m$. Since R is submaximal, each pre-open set is open [3] and so M is open. By Proposition 3.3, $m^{-1}M$ is pre-open in T containing e_T. Since η is pre-irresolute at identity e_S, $\exists N \in \mathcal{T}_p$ in S containing $e_S \ni g(N) \subseteq m^{-1}M$. Given that g is homomorphism and so $g(nN) = g(n)g(N) \subseteq M$. Hence g is pre-irresolute. □

One may remind that, A bijective mapping $\mu : S \mapsto T$ is p-homeomorphism [2] if μ is pre-continuous and $\mu(D)$ is pre-open for every $D \in O(S)$.

Theorem 3.7. Let S be a p-topological group and $k \in S$. Then for all $s \in S$,

(i) The mappings $\lambda_k(s) = ks$ and $\rho_k(s) = sk$ are p-homeomorphism.

(ii) Inversion mapping is p-homeomorphism.

Proof left to the reader.

Theorem 3.8. Let R, M be a p-topological group and its subgroup,

(i) If $\exists D \in O(R)$ and $D \subseteq M$, then $M \in \mathcal{T}_p$.

(ii) If $M \in O(R)$, then it is pre-closed.

(iii) If $M \in O(R)$, then M itself a p-topological group.

Proof left to the reader.
4. p-IRRESOLUTE TOPOLOGICAL GROUP AND PRE-CONNECTEDNESS

We discuss the independency of p-topological group from other generalization concepts of topological group. We also explore pre-connectedness properties of p-irresolute topological group through this section.

Example 4.1. Consider the group $S = (\mathbb{Z}_n, \oplus)$ with topology $\tau = \{\emptyset, \mathbb{Z}_n, \{0\}\}$. Then (S, τ) is S-topological and almost topological groups but not p-topological and s-topological group.

Theorem 4.2. Let (S, τ) be a pair satisfies \exists at least one singleton is open in S then τ is discrete if and only if (S, τ) is a s-topological group. By considering (S, τ) in Example 4.1, the above result need not be true in S-topological and almost topological groups.

Example 4.3. Consider the group $T = (\mathbb{Z}_n, \oplus)$ with the topology $\tau = \{\emptyset, \{0\}, \{0, 1\}, \{0, 2, 1\}, \ldots, \mathbb{Z}_n\}$. Then (T, τ) is S-topological and an almost topological groups. But (T, τ) is not p-topological and s-topological groups.

Example 4.4. Consider (S, τ) in Example 3.2, which is a p-topological group. Here (S, τ) is an almost topological group but not s-topological group.

Definition 4.5. The pair (T, τ) is said to be p-irresolute topological group if binary operations are pre-irresolute.

A topological space Y is **pre-connected** [8] if $Y \neq E \cup F$, where E, F are two disjoint non-empty pre-open sets.

Theorem 4.6. If A is a pre-connected, p-irresolute topological group and H, a discrete invariant subgroup of A, then $H \subseteq Z(A)$, where $Z(A)$ denotes center of A.

Proof. Suppose $H = \{e\}$, then the result is trivial. Suppose H is non-trivial. Let $g \neq e \in H$. Since, H is discrete, we can find $D \in O(A)$ of g in $A \ni D \cap H = \{g\}$. Now, A is p-irresolute topological group, $\exists E \in \tau_p$ of e and $E.g \in \tau_p$ of g in $A \ni (E.g).E^{-1} \subset D$. Let $b \in E$. Since H is an normal subgroup of A, we have $b.H = H.b$ which implies that $b.g \in H.b$ and so $g.e.b^{-1} \in H$. It is also clear that $b.g.b^{-1} \in E.g.E^{-1} \subset D$. Therefore, $b.g.b^{-1} \in D \cap H = \{g\}$ which implies $b.g.b^{-1} = g$. Thus, $b.g = g.b$ for each $b \in E$. Since, A is pre-connected, E^n with $n \in \mathbb{N}$ covers A. Thus, every element $a \in A$ can be written in the form...
\[a = b_1 \cdot b_2 \cdots b_n \] where \(b_1, b_2, \ldots, b_n \in E \) and \(n \in \mathbb{N} \). Since \(g \) commutes with every element of \(E \), we have \(a \cdot g = b_1 \cdot b_2 \cdots b_n \cdot g = b_1 \cdot b_2 \cdots g \cdot b_n = \cdots = b_1 \cdot b_2 \cdots b_n = g \cdot b_1 \cdot b_2 \cdots b_n = g \cdot a \). Hence, \(g \in H \subseteq Z(A) \). □

\section*{References}

