TOTAL GRAPH OF \mathbb{Z}_n AND ITS COMPLEMENT WITH RESPECT TO NIL IDEAL

Arijit Mishra1 and Kuntala Patra

ABSTRACT. Let \mathbb{Z}_n be a non-reduced commutative ring and let $N(\mathbb{Z}_n)$ denote the set of the nil elements of \mathbb{Z}_n. In this paper, we introduce the total graph of \mathbb{Z}_n with respect to $N(\mathbb{Z}_n)$, denoted by $T(\Gamma_N(\mathbb{Z}_n))$, as a simple undirected graph with all the elements of \mathbb{Z}_n as vertices and any two distinct vertices x and y are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$. Some properties of $T(\Gamma_N(\mathbb{Z}_n))$ and its subgraphs $T_N(\mathbb{Z}_n)$ and $T_{\overline{\mathbb{Z}_n}}(\mathbb{Z}_n)$ are studied. Also, we study some properties associated to the graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, the complement of $T(\Gamma_N(R))$.

1. INTRODUCTION

The idea of the total graph of a commutative ring R, denoted by $T(\Gamma(R))$, was first put forward by Anderson and Badawi [3] as a simple undirected graph having vertex set R and two distinct vertices x and y of $T(\Gamma(R))$ are adjacent if and only if $x + y \in Z(R)$, where $Z(R)$ denotes the set of all the zero-divisors of R. One can find detailed literature on total graphs in [3-5,7,8].

P. W. Chen [6], in the year 2003, introduced a special kind of graph structure of a commutative ring R whose vertex set contains all the elements of R and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$, where $N(R)$ denotes the set of all the nil elements of the ring R. This concept was

1corresponding author

2020 Mathematics Subject Classification. 05C25, 05C69.

Key words and phrases. Total Graph, Nil Ideal, Eulerian, Homomorphism.

Submitted: 31.12.2020; Accepted: 15.01.2021; Published: 27.01.2021.
later modified by Ai-Hua Li and Qi-Sheng Li [2] who defined it as an undirected simple graph $\Gamma_N(R)$ with vertex set $Z_N(R)^* = \{x \in R^* \mid xy \in N(R) \text{ for some } y \in R^* = R - \{0\}\}$ and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$ or $yx \in N(R)$.

In this paper, we take $R = \mathbb{Z}_n$. Throughout this paper, we shall use the notation $N(\mathbb{Z}_n)$ to denote the set of all the nil elements of the ring \mathbb{Z}_n. That is, $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 = 0\}$. For any commutative ring R, $N(R)$ is an ideal of R. We call this ideal a nil ideal of the ring R. We define the total graph of \mathbb{Z}_n with respect to $N(\mathbb{Z}_n)$, denoted by $T(\Gamma_N(\mathbb{Z}_n))$, as a simple, undirected graph whose vertex set contains all the elements of \mathbb{Z}_n and any two distinct vertices x and y of $T(\Gamma_N(\mathbb{Z}_n))$ are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$. Let $T_{N(\mathbb{Z}_n)}$ and $T_{N(\mathbb{Z}_n)}^{\overline{N(\mathbb{Z}_n)}}$ denote the induced subgraphs of $T(\Gamma_N(\mathbb{Z}_n))$ whose vertex sets are $N(\mathbb{Z}_n)$ and $\overline{N(\mathbb{Z}_n)}$ respectively, where $\overline{N(\mathbb{Z}_n)} = \mathbb{Z}_n - N(\mathbb{Z}_n)$. Also, the complement of the total graph $T(\Gamma_N(\mathbb{Z}_n))$, denoted by $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, is the simple undirected graph whose vertex set is \mathbb{Z}_n and two distinct vertices x and y are adjacent if and only if $x + y \in \mathbb{Z}_n - N(\mathbb{Z}_n)$.

2. Preliminaries

For any graph G, the diameter of G, denoted by $diam(G)$ is given by $diam(G) = sup\{d(x, y) : \text{where } x \text{ and } y \text{ are distinct vertices of } G\}$ and $d(x, y)$ is the length of the shortest path joining x and y. The girth of a graph G, denoted by $gr(G)$, is the length of the shortest cycle in G. If G contains no cycles, then $gr(G) = \infty$. A graph G is said to be Eulerian if and only if the degree of each of its vertices is even. A non-empty subset S of the set of all the vertices V of a graph is called a dominating set if every vertex in $V - S$ is adjacent to at least one vertex in S. The domination number γ of a graph G is defined to be the minimum cardinality of a dominating set in G and the corresponding dominating set is called a γ–set of G.

A ring R is said to be non-reduced if it contains at least one non-zero nil element. Otherwise it is said to be reduced.

3. The basic structure of $T(\Gamma_N(\mathbb{Z}_n))$

For any non-reduced \mathbb{Z}_n, the total graph $T(\Gamma_N(\mathbb{Z}_n))$ of \mathbb{Z}_n with respect to its nil ideal $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 \equiv 0 \pmod{n}\}$ is a simple, undirected graph
having vertex set Z_n and any two distinct vertices x and y of $T(\Gamma_N(Z_n))$ are adjacent if and only if $x + y \in N(Z_n)$.

Proposition 3.1. Let Z_n be non-reduced and let n be odd. Suppose that \exists some $m \in Z_n - N(Z_n)$ such that $2m \in N(Z_n)$. Then $2m = n_1$, for some $n_1 \in N(Z_n)$,

$$m = \frac{n_1}{2} \begin{cases} \in N(Z_n) & \text{if } n_1 \text{ is even} \\ \notin Z_n & \text{if } n_1 \text{ is odd} \end{cases}.$$

In both the cases, we get a contradiction. Thus for any non-reduced Z_n and for any odd n, \exists no $m \in Z_n - N(Z_n)$ such that $2m \in N(Z_n)$.

Again, let Z_n be non-reduced and let n be even. Since Z_n is non-reduced, so either $n = 2^k$ for some $k > 1$, or $n = 2^s \cdot p_1^{r_1} \cdot p_2^{r_2} \cdots p_s^{r_s}$, where at least one $r, r'_s > 1$ (since Z_n is non-reduced).

(i) Let $n = 2^k$. Then \exists some $m = 2^k - 2^{\frac{k-1}{2}} \in Z_{2^k} - N(Z_{2^k})$ such that $m + m = 2m \in N(Z_{2^k})$.

(ii) Let $n = 2^s \cdot p_1^{r_1} \cdot p_2^{r_2} \cdots p_s^{r_s}$. Then \exists some $m = 2^{\left\lfloor \frac{r_1+1}{2} \right\rfloor + 1} \cdot p_1^{\left\lfloor \frac{r_2+1}{2} \right\rfloor} \cdots p_s^{\left\lfloor \frac{r_s+1}{2} \right\rfloor} \in Z_n - N(Z_n)$ such that $m + m = 2m \in N(Z_n)$.

Thus for any non-reduced Z_n and for any even n, \exists some $m \in Z_n - N(Z_n)$ such that $2m \in N(Z_n)$.

4. Main Results

For $R = Z_n$, the set $N(R)$ is an ideal of R. Since $N(R)$ is closed under addition, so for any distinct elements $x, y \in N(R), x + y \in N(R)$.

Throughout this section, we use the notation $|N(Z_n)| = \alpha$ and $|Z_n - N(Z_n)| = \beta$.

Theorem 4.1. Let $R = Z_n$ be non-reduced and $N(Z_n)$ be the set of all the nil elements of Z_n. Then $T_{N(Z_n)}$ is a complete subgraph of $T(\Gamma_N(Z_n))$ and $T_{N(Z_n)}$ is disjoint from $T_{N(Z_n)/\beta}$.

Theorem 4.2. Let $R = Z_n$ and let $|R| = \alpha$ and $|R - N(R)| = \beta$. Then

1. If $|R|$ is odd, then $T_{N(R)/\beta}$ is the disjoint union of $\frac{\beta}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.

2. If $|R|$ is even, then $T_{N(R)/\beta}$ is the disjoint union of the complete graph K_{α} and $\frac{\beta - \alpha}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.
Theorem 4.3. [1] Let $R = \mathbb{Z}_n$, $|\text{N}(R)| = \alpha$ and $|R - \text{N}(R)| = \beta$. Then

1. If $|R|$ is odd, then $T(\Gamma_{\text{N}}(R))$ is the disjoint union of the complete graph K_α and $\frac{\beta}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.
2. If $|R|$ is even, then $T(\Gamma_{\text{N}}(R))$ is the disjoint union of two complete graphs K_α and $\frac{\beta - \alpha}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{$T(\Gamma(\mathbb{Z}_{16}))$}
\end{figure}

Theorem 4.4. For $R = \mathbb{Z}_n$, let x be any vertex of $T(\Gamma_{\text{N}}(R))$. Then

\[\deg(x) = \begin{cases}
\alpha & \text{if } x \in R - \text{N}(R) \text{ such that } 2x \notin \text{N}(R) \\
\alpha - 1 & \text{if } x \in \text{N}(R) \text{ or } x \in R - \text{N}(R) \text{ such that } 2x \in \text{N}(R).
\end{cases} \]

Proof. From Theorem 4.3, we have

\[T(\Gamma_{\text{N}}(R)) = \begin{cases}
K_\alpha \cup (\frac{\beta - \alpha}{2\alpha})K_{\alpha,\alpha} \cup K_\alpha, & \text{if } |R| \text{ is even} \\
K_\alpha \cup (\frac{\beta}{2\alpha})K_{\alpha,\alpha}, & \text{if } |R| \text{ is odd}
\end{cases}, \]

where the unions are disjoint.

Let $x \in T(\Gamma_{\text{N}}(R))$. Clearly, two cases arise:

Case 1: $|R|$ is odd. If $x \in K_\alpha$, then $\deg(x) = \alpha - 1$. If $x \in K_{\alpha,\alpha}$, then $\deg(x) = \alpha$.

Case 2: $|R|$ is even. If $x \in K_\alpha$, then $\deg(x) = \alpha - 1$. If $x \in K_{\alpha,\alpha}$, then $\deg(x) = \alpha$. Since $x \in K_\alpha$, $\forall x \in T_{\text{N}(R)}$ or $\forall x \in R - \text{N}(R)$ such that $2x \notin \text{N}(R)$ and since $x \in K_{\alpha,\alpha}$ $\forall x \in R - \text{N}(R)$ such that $2x \in \text{N}(R)$, therefore

\[\deg(x) = \begin{cases}
\alpha & \text{if } x \in R - \text{N}(R) \text{ such that } 2x \notin \text{N}(R) \\
\alpha - 1 & \text{if } x \in \text{N}(R) \text{ or } x \in R - \text{N}(R) \text{ such that } 2x \in \text{N}(R).
\end{cases} \]

\[\square \]
Theorem 4.5. The number of edges of $T(\Gamma_N(Z_n))$ are
\[
\begin{cases}
\frac{\alpha(\alpha+\beta-1)}{2} & \text{if } n \text{ is odd} \\
\frac{\alpha(\alpha+\beta-2)}{2} & \text{if } n \text{ is even}
\end{cases}
\]

Proof. Let n be odd. By Theorem 4.2, $T(\Gamma_N(Z_n))$ is the disjoint union of 1 K_α and $\frac{\beta}{2\alpha} K_{\alpha,\alpha}$’s. Therefore, by the Sum of Degrees of Vertices Theorem, $\alpha(\alpha-1)+\alpha\beta = 2|E|$, where $|E|$ denotes the number of edges, $\Rightarrow |E| = \frac{\alpha(\alpha+\beta-1)}{2}$.

Next, let n be even. Then $T(\Gamma_N(Z_n))$ is the disjoint union of 2 K_α’s and $\frac{\beta-\alpha}{2\alpha} K_{\alpha,\alpha}$’s. Therefore, $\alpha(\alpha-1)+\alpha(\alpha-1)+\alpha(\beta-\alpha) = 2|E| \Rightarrow |E| = \frac{\alpha(\alpha+\beta-2)}{2}$.

Theorem 4.6. The graph $T(\Gamma_N(Z_n))$ is non-Eulerian $\forall n \in \mathbb{N}$.

Proof. From Theorem 4.4 for any $x \in T(\Gamma_N(Z_n))$,
\[
deg(x) = \begin{cases}
\alpha & \text{if } x \in R - N(R) \text{ such that } 2x \not\in N(R) \\
\alpha - 1 & \text{if } x \in N(R) \text{ or } x \in R - N(R) \text{ such that } 2x \in N(R)
\end{cases}
\]
So the graph $T(\Gamma_N(Z_n))$ contains vertices of degree α as well as $\alpha - 1$, which clearly have different parities. So the degree of each vertex of $T(\Gamma_N(Z_n))$ is not even and therefore $T(\Gamma_N(Z_n))$ is not an Eulerian graph.

Theorem 4.7. For any $m_1, m_2 \in Z_n - N(Z_n)$, m_1 is adjacent to m_2 if and only if every element of the coset $m_1 + N(Z_n)$ is adjacent to every element of the coset $m_2 + N(Z_n)$.

Proof. that m_1 is adjacent to m_2. Then $m_1 + m_2 \in N(Z_n)$ and thus $m_2 = z_i - m_1$, $z_i \in N(Z_n)$. The elements of the coset $m_1 + N(Z_n)$ are adjacent to the elements of the coset $(z_i - m_1) + N(Z_n)$ since for some $n_1, n_2 \in N(Z_n)$, $(m_1 + n_1) + (z_i - m_1 + n_2) = z_i + (n_1 + n_2) \in N(Z_n)$. Conversely, let each element of the coset $m_1 + N(Z_n)$ be adjacent to each element of $m_2 + N(Z_n)$. Then for some $n_1, n_2 \in N(Z_n)$, $(m_1 + n_1) + (m_2 + n_2) \in N(Z_n) \Rightarrow (m_1 + m_2) + (n_1 + n_2) \in N(Z_n) \Rightarrow m_1 + m_2 \in N(Z_n)$. Therefore, m_1 is adjacent to m_2.

Theorem 4.8. Let R be a non-reduced commutative ring with unity. Then the following conditions hold:

1. Let G be an induced subgraph of $T_{\overline{N(R)}}$ and let $m_1, m_2 \in G$ such that $m_1 \neq m_2$ and let m_1 and m_2 be connected by a path in G. Then $diam(T_{\overline{N(R)}}) \leq 2$.

TOTAL GRAPH OF Z_N AND ITS COMPLEMENT... 617
Let $R - N(R) \neq \emptyset$. If $T_{N(R)}$ is connected and contains a cycle, then $gr(T_{N(R)}) = 3$ or 4.

Proof.

(1) If m_1 is adjacent to m_2, then $d(m_1, m_2) = 1$. Let $d(m_1, m_2) > 1$ and let $m_1 - a_1 - a_2 - m_2$ be a path in G between m_1 and m_2. Then $m_1 + a_1, a_1 + a_2, a_2 + m_2 \in N(R)$. Now, $m_1 + m_2 = (m_1 + a_1) - (a_1 + a_2) - (a_2 + m_2) \in N(R)$, since $N(R)$ is an ideal of R. Hence, m_1 is connected to m_2 by a path of length 2. Thus, $diam(T_{N(R)}) \leq 2$.

(2) The result easily follows from Theorem 4.2 since $gr(K_\alpha) = 3$ for $\alpha \geq 3$ and $gr(K_{\alpha,\alpha}) = 4$. □

Theorem 4.9. Let \mathbb{Z}_n be non-reduced and $N(\mathbb{Z}_n)$ be the set of all the nil elements of \mathbb{Z}_n. Then $diam(T(\Gamma_N(\mathbb{Z}_n))) = 2$.

Proof. Since the diameter of any disconnected graph is equal to the maximum diameter of its connected components, so using Theorem 4.3, since $T(\Gamma_N(\mathbb{Z}_n))$ is the disjoint union of complete and complete bipartite graphs, so $diam(T(\Gamma_N(\mathbb{Z}_n))) = diam(K_{\alpha,\alpha})$. Also, \mathbb{Z}_n, being non-reduced, $|N(\mathbb{Z}_n)| = \alpha \geq 2$. Consequently, $diam(T(\Gamma_N(\mathbb{Z}_n))) = 2$. □

Theorem 4.10. Let $f : R_1 \rightarrow R_2$ be a homomorphism. For any $m_1, m_1' \in R_1$, if the coset $m_1 + N(R_1)$ is adjacent to each element of $m_1' + N(R_1)$, then $f(m_1) + N(R_2)$ is adjacent to each element of $f(m_1') + N(R_2)$.

Proof. Let $m_1 + N(R_1)$ be adjacent to $m_1' + N(R_1)$. Then for some $r_1, r_1' \in N(R_1)$, $(m_1 + r_1) + (m_1' + r_1') \in N(R_1) \Rightarrow (m_1 + m_1') + (r_1 + r_1') \in N(R_1) \Rightarrow m_1 + m_1' \in N(R_1)$. f, being a homomorphism, preserves adjacency and, thus, $f(m_1)$ is adjacent to $f(m_1')$ in R_2. That is, $f(m_1) + f(m_1') \in N(R_2)$. So for some $n_1, n_1' \in N(R_2)$, $(f(m_1) + n_1) + (f(m_1') + n_1') \in N(R_2) \Rightarrow f(m_1) + N(R_2)$ is adjacent to each element of $f(m_1') + N(R_2)$. □

5. Some properties associated to $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, the complement of $T(\Gamma_N(\mathbb{Z}_n))$.

Being a complement of $T(\Gamma_N(\mathbb{Z}_n))$, the graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ contains all the elements of \mathbb{Z}_n as vertices and any two distinct vertices x and y of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ are adjacent if and only if $x + y \in \mathbb{Z}_n - N(\mathbb{Z}_n)$.
Theorem 5.1. Let $R = \mathbb{Z}_n$. For $x \in N(R)$ and $y \in R - N(R)$ such that $2y \in N(R)$, \{x + N(R)\} \cup \{y + N(R)\} forms a complete bipartite graph in $\overline{T(\Gamma_N(R))}$.

Proof. In the graph $\overline{T(\Gamma_N(R))}$, each element of the coset $x + N(R)$ is adjacent to each element of the coset $y + N(R)$ since $(x + n_1) + (y + n_2) = (x + y) + (n_1 + n_2) \in R - N(R)$, for some $n_1, n_2 \in N(R)$, since $x + y \in R - N(R)$. Also the elements of the coset $x + N(R)$ are not adjacent to each other because for some $n_1, n_2 \in N(R)$, $(x + n_1) + (x + n_2) = 2x + (n_1 + n_2) \in N(R)$. Also since $2y + (n_1 + n_2) \in N(R)$, for some $n_1, n_2 \in N(R)$, so the elements of the coset $y + N(R)$ are not adjacent to each other. Consequently, $\{x + N(R)\} \cup \{y + N(R)\}$ forms a complete bipartite graph in $\overline{T(\Gamma_N(R))}$. \qed

Theorem 5.2. Let $R = \mathbb{Z}_n$ and x be any vertex of $\overline{T(\Gamma_N(R))}$. Then

\[
\text{deg}(x) = \begin{cases}
n - \alpha & \text{if } x \in N(R) \text{ or } x \in R - N(R) \text{ such that } 2x \in N(R) \\
n - \alpha - 1 & \text{if } x \in R - N(R) \text{ such that } 2x \in R - N(R) \end{cases}
\]

The proof follows directly from Theorem 4.4.

Theorem 5.3. $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is never Eulerian.

The proof is straightforward since the degrees $n - \alpha$ and $n - \alpha - 1$ are of opposite parities.

Theorem 5.4. Let $R = \mathbb{Z}_n$. Then the following statements hold:

(a) If R is a field such that $|R| > 2$, then $\overline{T(\Gamma_N(R))}$ contains an isolated vertex.

(b) $\overline{T(\Gamma_N(R))}$ contains no vertex of degree $n - 1$.

(c) $\overline{T(\Gamma_N(R))}$ contains no isolated vertex.

(d) $\overline{T(\Gamma_N(R))}$ contains a vertex of degree $n - 1$ if R is a field.

Proof.

(a) Since R is a field, so $N(R) = \{0\}$. Thus for each $x \in R$, \exists a unique $y \in R$ such that $x + y = 0 \in N(R)$, i.e. $x = -y$. This gives us $\binom{n-1}{2}$ pairs of complete graphs K_2 and an isolated vertex 0.

(b) For any $R = \mathbb{Z}_n$, since $1, (n - 1) \in R - N(R)$, so $|N(R)| = \alpha \leq n - 2$. For any $x \in N(R)$ or $x \in R - N(R)$ such that $2x \in N(R)$, by Theorem 4.4, $\text{deg}(x) = \alpha - 1 \leq n - 3$. For any $x \in R - N(R)$ such that $2x \in R - N(R)$, $\text{deg}(x) = \alpha \leq n - 2$. So in either case, the vertices of $\overline{T(\Gamma_N(R))}$ have degree less than $n - 1$.

The proof is straightforward since the degrees $n - \alpha$ and $n - \alpha - 1$ are of opposite parities.
(c) Let $\overline{T(\Gamma_N(R))}$ contain an isolated vertex x. Then in $T(\Gamma_N(R))$, $\deg(x) = n - 1$. But that contradicts (b). Hence $\overline{T(\Gamma_N(R))}$ contains no isolated vertex.

(d) Let $R = \mathbb{Z}_n$ be a field. By result (a), since $T(\Gamma_N(R))$ contains an isolated vertex, say x, thus, in $\overline{T(\Gamma_N(R))}$, $\deg(x) = n - 1$. Hence the result follows. \hfill \Box

Theorem 5.5. For any $n > 1$ and non-reduced \mathbb{Z}_n, $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is always connected.

Proof. $N(\mathbb{Z}_n)$, being an ideal of \mathbb{Z}_n, all the vertices of $N(\mathbb{Z}_n)$ are adjacent to each other in $T(\Gamma_N(\mathbb{Z}_n))$ and therefore in the corresponding graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, each $x_i \in N(\mathbb{Z}_n)$ is adjacent to each $y_i \in \mathbb{Z}_n - N(\mathbb{Z}_n)$. So the graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is connected. \hfill \Box

REFERENCES

[1] A. MISHRA, K. PATRA: Intersection Graph of $\gamma-$sets in the total graph of \mathbb{Z}_n with respect to nil ideal, Communicated.

