ON ATOM-BOND CONNECTIVITY STATUS INDEX OF GRAPHS

D. S. Revankar¹, Priyanka S. Hande, and S. P. Hande

ABSTRACT. The atom-bond connectivity (ABC) status index of a graph is defined by V. R. Kulli as $ABC(G)=\sum_{uv\in E(G)}\sqrt{\sigma_u+\sigma_v-2}/\sigma_u\sigma_v$, where σ_u is a status of a vertex $u \in V(G)$ and is defined as the sum of its distance from every other vertex in $V(G)$. In this paper we have obtained the bounds for the atom-bond connectivity status index. Also obtained atom-bond connectivity status index of some graphs.

1. INTRODUCTION

A topological index is a molecular structure descriptor having many applications in rationalizing the stability of linear and branched alkanes as well as the strain energy of cycloalkanes. It is a numeric numerical quantity calculated mathematically of molecule obtained from its structural graph. Estrada et.al. [12] has modified the Randić connectivity index [11] and proposed a new topological index named atom–bond connectivity (ABC) index. The atom–bond connectivity (ABC) index is widely studied [2,4–8,10,12] and for a connected

¹corresponding author

2020 Mathematics Subject Classification. 05C05, 05C12, 05C35, 05C90.

Key words and phrases. Atom-bond connectivity status index, Distance, Status, diameter.

Submitted: 30.12.2020; Accepted: 14.01.2021; Published: 15.03.2021.

1197
graph G it is defined as,

$$ABC \left(G \right) = \sum_{uv \in E(\mathcal{G})} \sqrt{\frac{d_u + d_v - 2}{d_ud_v}}.$$

Where d_u is the degree of vertex $u \in V(G)$.

Status \([\text{9}]\) of a vertex $u \in V(G)$ is denoted by σ_u and is defined by the sum of its distance from every other vertex in $V(G)$.

Harmonic status index \([\text{3}]\) is defined by H.S. Ramane et. al. as

$$HS \left(G \right) = \sum_{uv \in E(G)} \frac{2}{\sigma_u + \sigma_v}.$$

Here σ_u is the status of vertex u of G, $E(G)$ is the edge set. V. R. Kulli defined atom-bond connectivity status index \([\text{2}]\) of G as,

$$ABCS \left(G \right) = \sum_{uv \in E(G)} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u \sigma_v}}.$$

2. Preliminary results

Theorem 2.1. \([\text{2}]\) For a complete graph K_n with n vertices,

$$ABCS \left(K_n \right) = \frac{n}{\sqrt{2}} \sqrt{(n - 2)}.$$

Theorem 2.2. \([\text{2}]\) For a complete bipartite graph $K_{p,q}$ with $p + q$ vertices and pq edges,

$$ABCS \left(K_{p,q} \right) = pq \times \sqrt{\frac{3(p + q) - 6}{2(p^2 + q^2) - 6(P + q) + (5pq + 4)}}.$$

Theorem 2.3. \([\text{2}]\) For a cycle C_n with n vertices and n edges,

$$ABCS \left(C_n \right) = \begin{cases} \frac{2}{\sqrt{2(n^2 - 4)}} & \text{if } n \text{ is even} \\ \frac{n}{2n\sqrt{2(n^2 - 5)}} & \text{if } n \text{ is odd} \end{cases}.$$

Theorem 2.4. \([\text{2}]\) For a wheel graph W_n with $n + 1$ vertices and $2n$ edges,

$$ABCS \left(W_n \right) = \frac{2n\sqrt{n - 2}}{(2n - 3)} + \sqrt{\frac{2n(3n - 2)}{(2n - 3)}}.$$
Theorem 2.5. [2] For a friendship graph F_n with $2n + 1$ vertices and $3n$ edges,

$$ABCS(F_n) = \frac{n\sqrt{8n-6}}{4n-2} + \sqrt{\frac{n(3n-5)}{2n-1}}.$$

3. Obtained bounds for the atom-bond connectivity status index

Theorem 3.1. If G is a connected graph having n vertices and let D be the diameter of G then,

$$\sum_{uv \in E(G)} \sqrt{\frac{2D(n-1) - (D-1)[d(u) + d(v)] - 2}{D^2(n-1)^2 - D(n-1)[d(u) + d(v)](D-1) + d(u).d(v)(D-1)^2}}$$

$$\leq ABCS(G) \leq \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [d(u) + d(v)]}{(2n-2 - d(u)).(2n-2 - d(v))}}.$$

Equality holds if and only if $\text{diam}(G) \leq 2$.

Proof.

Lower Bound: For a vertex $u \in V(G)$ of a graph G, $d(u)$ vertices are at distance 1 from u. Then the remaining vertices are $[n - 1 - d(u)]$ which are of at most diameter D from u, and

$$\sigma(u) \leq d(u) + D(n-1 - d(u)) = D(n-1) - (D-1)d(u)$$

$$[\sigma(u) + \sigma(v)] \leq 2D(n-1) - (D-1)[d(u) + d(v)]$$

$$\sigma(u).\sigma(v) \leq [D(n-1) - (D-1)d(u)] \cdot [D(n-1) - (D-1)d(v)].$$

Therefore,

$$ABCS(G) = \sum_{uv \in E(G)} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u\sigma_v}}$$

$$\geq \sum_{uv \in E(G)} \sqrt{\frac{2D(n-1) - (D-1)[d(u) + d(v)] - 2}{D^2(n-1)^2 - D(n-1)[d(u) + d(v)](D-1) + d(u).d(v)(D-1)^2}}.$$

Upper Bound: Out of n vertices for $u \in V(G)$, $d(u)$ vertices are at distance 1 from u and the remaining $[n - 1 - d(u)]$ vertices are at the distance 2.

$$\sigma(u) \geq d(u) + 2(n-1 - d(u)) = 2n - 2 - d(u)$$

$$\sigma(v) \geq d(v) + 2(n-1 - d(v)) = 2n - 2 - d(v)$$

Therefore,
\[ABCS(G) \leq \sum_{uv \in E(G)} \sqrt{\frac{(4n - 4) - [d(u) + d(v)] - 2}{(2n - 2 - d(u)) \cdot (2n - 2 - d(v))}}. \]

Hence, (3.1)
\[\sum_{uv \in E(G)} \frac{2D (n - 1) - (D - 1) [d(u) + d(v)] - 2}{D^2 (n - 1)^2 - D (n - 1) [d(u) + d(v)] (D - 1) + d(u) \cdot d(v) (D - 1)^2} \leq ABCS(G) \leq \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [d(u) + d(v)]}{(2n - 2 - d(u)) \cdot (2n - 2 - d(v))}}. \]

Equality holds when the diameter \(D \) is 1 or 2.

Conversely, let \(ABCS(G) = \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [d(u) + d(v)]}{(2n - 2 - d(u)) \cdot (2n - 2 - d(v))}} \). Suppose \(D \geq 3 \) therefore there exist at least one pair vertices \(u \) and \(v \) such that \(d(u, v) \geq 3 \). Therefore, \(\sigma(u) \geq d(u) + 3 + 2(n - 2 - d(u)) = 2n - 1 - d(u) \). Hence,
\[ABCS(G) \leq \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [d(u) + d(v)]}{(2n - 2 - d(u)) \cdot (2n - 2 - d(v))}} \leq \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [d(u) + d(v)]}{(2n - 2 - d(u)) \cdot (2n - 2 - d(v))}}. \]

This is a contradiction. Therefore \(diam(G) \leq 2 \).

Corollary 3.1. Let \(G \) be a connected graph having \(n \) vertices and \(m \) edges and let \(D \) be the diameter of \(G \). Let \(\delta \) be the minimum and \(\Delta \) be the maximum degree of the vertices of \(G \), then
\[m \cdot \sqrt{\frac{2D (n - 1) - (D - 1) \cdot 2\delta - 2}{D^2 (n - 1)^2 - 2D \delta (n - 1) (D - 1) + \delta^2 (D - 1)^2}} \leq ABCS(G) \leq \sqrt{\frac{4n - 6 - 2\Delta}{(2n - 2 - 2\Delta)^2}}. \]

Proof. For any vertex \(u \in V(G) \), \(d(u) \geq \delta \) and \(d(u) \leq \Delta \). Therefore substituting \([d(u) + d(v)] \geq 2\delta \) on LHS and \([d(u) + d(v)] \leq 2\Delta \) on the RHS of equation 3.1 we obtain the result. \(\square \)
Corollary 3.2. For a connected regular graph G of degree r having n vertices and m edges and $diam(G) = D$, then,

$$m \cdot \sqrt{2D \left(n - 1\right) - 2r \left(D - 1\right)} + 2 \leq ABCS(G) \leq \sqrt{\frac{4n - 6 - 2r}{2n - 2 - 2r}}.$$

Equality holds if and only if $diam(G) \leq 2$.

4. Atom-bond connectivity status index of some graphs

Here we have obtained ABCS index of some graphs

Proposition 4.1. Let W_{n+1} is a wheel graph with $n \geq 3$. Then,

$$ABCS \left(W_{n+1}\right) = n \times \left(\sqrt{\frac{3n - 5}{n(2n - 3)}} + \frac{4n - 8}{(2n - 3)^2}\right).$$

Proof. We give alternate proof of Theorem 2.4. Partitioning the edge set of W_{n+1} in to two sets E_1 and E_2 where, $E_1 = \{uv/d(u) = n$ and $d(v) = 3\}$ and $E_2 = \{uv/d(u) = 3$ and $d(v) = 3\}$. Also, $diam(W_{n+1}) = 2$,

$$ABCS \left(W_{n+1}\right) = \sum_{uv \in E_1(G)} \sqrt{\frac{4(n+1) - 6 - (n+3)}{2(n+1) - 2 - n}} + \frac{4n - 8}{2(n+1) - 2 - 3}.$$

Thus, $ABCS \left(W_{n+1}\right) = n \times \left(\sqrt{\frac{3n - 5}{n(2n - 3)}} + \frac{4n - 8}{(2n - 3)^2}\right).$ \hfill \Box

Proposition 4.2. Let F_n, $n \geq 2$ be a Friendship graph. Then,

$$ABCS \left(F_n\right) = \left(2n \times \sqrt{\frac{3n - 2}{2n(2n - 1)}} + \sqrt{\frac{4n - 3}{2(2n - 1)^2}}\right) - \left(n \times \sqrt{\frac{4n - 3}{2(2n - 1)^2}}\right).$$

Proof. We give alternate proof of Theorem 2.5.

Partitioning the edge set of F_n in to two sets E_1 and E_2 where, $E_1 = \{uv/d(u) = 2n$ and $d(v) = 2\}$ and $E_2 = \{uv/d(u) = 2$ and $d(v) = 2\}$. Also, $|E_1| = 2n$
and $|E_2| = n$. Also, $\text{diam}(F_n) = 2$ and F_n has $2n + 1$ vertices. Therefore, by the equality part of Theorem 3.1

\[
ABCS (F_n) = \sum_{uv \in E_1(G)} \sqrt{\frac{4(2n + 1) - 6 - (2n + 2)}{2(2n + 1) - 2 - 2n}} + \sum_{uv \in E_2(G)} \sqrt{\frac{4(2n + 1) - 6 - (2 + 2)}{2(2n + 1) - 2 - 2}} = \sum_{uv \in E_1(G)} \sqrt{\frac{6n - 4}{(2n)(4n - 2)}} + \sum_{uv \in E_2(G)} \sqrt{\frac{8n - 6}{(4n - 2)^2}} = \sum_{uv \in E_1(G)} \sqrt{\frac{2(3n - 2)}{4(n)(2n - 1)}} + \sum_{uv \in E_2(G)} \sqrt{\frac{2(4n - 3)}{4(2n - 1)^2}}.
\]

Therefore $ABCS (F_n) = 2n \times \sqrt{\frac{(3n-2)}{2n(2n-1)}} + n \times \sqrt{\frac{4n-3}{2(2n-1)^2}}$. □

Proposition 4.3. For a path on n vertices,

\[
ABCS (P_n) = \sum_{i=1}^{n-1} \sqrt{\frac{(n - i)^2 + i^2 - 2}{\left[\frac{n^2 + n}{2} + i(i - n - 1)\right] \left[\frac{n^2 + n}{2} + (i + 1)(i - n)\right]}}.
\]

Proof. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices, where v_i is adjacent to v_{i+1}, $i = 1, 2, 3, \ldots, (n - 1)$. Therefore, $\sigma (v_i) = (i - 1) + (i - 2) + \cdots + 1 + 1 + 2 + \cdots + (n - i) = \left[\frac{n^2 + n}{2} + i(i - n - 1)\right]$ and $\sigma (u) + \sigma (v) - 2 = (n - i)^2 + i^2 - 2$.

Hence the result follows. □

5. **Atom-bond connectivity status index of subdivision graph of some graph**

Definition 5.1. If $G = (V, E)$ be a connected graph on n vertices and m edges then the subdivision graph of G is denoted by $S(G)$ and defined as a graph resulting from introducing a vertex of degree two for every edge.

Theorem 5.1. Let K_n is a complete graph on n vertices. Then,

\[
ABCS [S (K_n)] = 2m \times \sqrt{\frac{7n^2 - 9n - 4}{n^2(6n^2 - 15n + 9)}}.
\]
ON ATOM-BOND CONNECTIVITY STATUS INDEX OF GRAPHS 1203

Proof. Partitioning the vertex set of $S(K_n)$ into two vertex set.

Let $U = \{u_1, u_2, u_3, \ldots, u_n\}$ with $|U| = n$ be the vertex set of K_n and let $V = \{v_1, v_2, v_3, \ldots, v_m\}$ be the vertex set of subdivision vertices with $|V| = m$. For any edge E in $S(K_n)$, $E = \{uv/u \in U$ and $v \in V\}$. Therefore, every vertex $u_i \in U$ is at a distance 2 from every vertex $u_j \in U$ in $S(K_n)$. As such there are $(n - 1)$ vertices at a distance 2 from u_i.

Also $(n - 1)$ subdivision vertices are at distance 1 from u_i and the remaining $[m - (n - 1)]$ vertices are at distance 3 from u_i. Therefore,

$$\sigma(u_i) = 2(n - 1) + (n - 1) + 3[m - (n - 1)]$$

$$= 3(n - 1) + 3 \left[\frac{n(n - 1)}{2} - (n - 1) \right].$$

Hence, $\sigma(u_i) = 3 \left[\frac{n(n - 1)}{2} \right].$

Similarly, for every vertex $v_i \in V$ there are two vertices in U at distance 1 and the remaining $(n - 2)$ vertices of U at a distance 3.

Also, $(2n - 4)$ subdivision vertices are at distance 2 and $[(m - 1) - 2d(u) - 1]$ number of vertices are at distance 4.

$$\sigma(v_i) = 2 + 2(2n - 4) + 3(n - 2) + 4[(m - 1) - 2(d(u) - 1)]$$

$$= 7n - 12 + 4[(nC_2 - 1) - 2((n - 1) - 1)] = 2n^2 - 3n = n(2n - 3).$$

Therefore,

$$ABCS[S(K_n)] = \sum_{uv \in E(S(K_n))} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u \sigma_v}}$$

$$= \sum_{uv \in E(S(K_n))} \sqrt{\frac{7n^2 - 9n - 4}{n^2(6n^2 - 15n + 9)}}.$$

Since there are $2m$ edges in $S(K_n)$, $ABCS[S(K_n)] = 2m \times \sqrt{\frac{7n^2 - 9n - 4}{n^2(6n^2 - 15n + 9)}}$. □

Example 1. From the figure in $S(K_4)$, $\sigma(v_i) = 18$, $i = 1, 2, 3, 4$. Let s_j, $j = 1, 2, 3, 4, 5, 6$ be the subdivision vertices, then $\sigma(s_j) = 20$. Then,

$$ABCS[S(K_4)] = \sum_{uv \in E(G)} \sqrt{\frac{18 + 20 - 2}{20 \times 18}} = 12 \times \sqrt{\frac{36}{360}} = 3.7947.$$
By the formula for $m = 6$ and $n = 4$,

$$ABCS[S(K_4)] = 2m \times \sqrt{\frac{7n^2 - 9n - 4}{n^2(6n^2 - 15m + 9)}} = 12 \times \sqrt{\frac{7(16) - 9(4) - 4}{4^2[6(16) - 15(4) + 9]}} = 3.7947.$$

Theorem 5.2. For a complete bipartite graph $K_{p,q}$ on n vertices,

$$ABCS[S(K_{p,q})] = m \times \left[\sqrt{\frac{7m + n + 4p - 10}{(3m + 4p - 4)(4m + n - 4)}} + \sqrt{\frac{7m + n + 4q - 10}{(3m + 4q - 4)(4m + n - 4)}} \right].$$

Proof. Partitioning the vertex set of subdivision graph of $K_{p,q}$ into three vertex set $U = \{u_1, u_2, u_3, \ldots, u_p\}$; $V = \{v_1, v_2, v_3, \ldots, v_q\}$; $W = \{w_1, w_2, w_3, \ldots, w_m\}$. Here $n = p + q$ and $m = pq$. For any edge in $S(K_{p,q})$, partitioning the edge set, $E = \{uv/u \in U \text{ or } V \text{ and } v \in W\}$. Let $E_1 = \{uv/u \in U \text{ and } v \in W\}$ and $E_2 = \{uv/u \in V \text{ and } v \in W\}$. Every vertex $u \in E_1$ is at a distance 1 from q subdivision vertices, at a distance 2 from q vertices of V, at a distance 4 from $(p-1)$ vertices of U, at a distance 3 from $(p-1)$ subdivision vertices and at a distance 3 from $(p-1)(q-1)$ subdivision vertices. Therefore,

$$\sigma(u) = q + 2q + 3(p-1) = 4(p-1) + 3(p-1)(q-1)$$

$$\sigma(u) = 3pq + 4p - 4 = 3m + 4p - 4.$$
Similarly, every vertex \(u \in E_2 \) is at a distance 1 from \(p \) subdivision vertices, at a distance 2 from \(p \) vertices of \(U \), at a distance 4 from \((q - 1) \) vertices of \(U \), at a distance 3 from \(p(q - 1) \) subdivision vertices.

Therefore, \(\sigma(u) = p + 2p + 3p(q - 1) + 4(q - 1) \sigma(u) = 3pq + 4q - 4 = 3m + 4q - 4. \)

For every vertex \(v \in E_1 \) or \(E_2 \), two vertices are at a distance 1, \((p - 1)\) and \((q - 1)\) vertices of \(U \) and \(V \) are at a distance 3, \((p - 1)\) and \((q - 1)\) vertices are at distance 2 and \((p - 1)(q - 1)\) vertices at distance 4. Therefore, \(\sigma(v) = 2 + 3(p + q - 2) + 2[(p - 1) + (q - 1)] + 4(p - 1)(q - 1). \)

\(\sigma(v) = 4m + n - 4. \)

By the definition of Atom bond connectivity status index of a graph \(G \),

\[
ABCS[S(K_{p,q})] = \sum_{uv \in E_1} \sqrt{\frac{7m + n + 4p - 10}{(3pq + 4p - 4)(4m + n - 4)}} + \sum_{uv \in E_2} \sqrt{\frac{7m + n + 4q - 10}{(3pq + 4q - 4)(4m + n - 4)}}.
\]

Hence,

\[
ABCS[S(K_{p,q})] = m \times \left[\sqrt{\frac{7m + n + 4p - 10}{(3m + 4p - 4)(4m + n - 4)}} + \sqrt{\frac{7m + n + 4q - 10}{(3m + 4q - 4)(4m + n - 4)}} \right].
\]

\(\square \)

Example 2. From the figure 2 in, \(S(K_{2,3}), \sigma(u_1) = \sigma(u_2) = 22, \sigma(v_1) = \sigma(v_2) = \sigma(v_3) = 26. \) Let \(w_i, i = 1, 2, 3, 4, 5, 6 \) be the subdivision vertices. Then, \(\sigma(w_i) = \)
25 for \(i = 1, 2, 3, 4, 5, 6\). Now,

\[
ABCS[(K_{2,3})] = \sum_{uv \in E_1} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u \sigma_v}} + \sum_{uv \in E_2} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u \sigma_v}}
\]

\[
= \sum_{uv \in E_1} \sqrt{\frac{22 + 25 - 2}{22(25)}} + \sum_{uv \in E_2} \sqrt{\frac{26 + 25 - 2}{26(25)}} = 3.3635.
\]

By the Formula for \(m = 6, n = 5, p = 2, q = 3\),

\[
ABCS[(K_{2,3})] = m \times \left[\sqrt{\frac{7m + n + 4p - 10}{(3m + 4p - 4)(4m + n - 4)}} + \sqrt{\frac{7m + n + 4q - 10}{(3m + 4q - 4)(4m + n - 4)}} \right]
\]

\[
= 6 \times \left[\sqrt{\frac{7(6) + 5 + 4(2) - 10}{3(6) + 4(2) - 4}[4(6) + 5 - 4]} + \sqrt{\frac{7(6) + 5 + 4(3) - 10}{3(6) + 4(3) - 4}[4(6) + 5 - 4]} \right]
\]

\[
= 3.3635.
\]

Theorem 5.3. If \(P_n\) is a path graph on \(n\) vertices, then

\[
ABCS[(P_n)] = \sum_{i=1}^{2n-2} \sqrt{\frac{2n(2n-1) + i(i - 2n) + (i + 1)[(i + 1) - 2n] - 2}{[n(2n-1) + i(i - 2n)][n(2n-1) + (i + 1)[(i + 1) - 2n]]}}.
\]

Proof. The subdivision graph of \(P_n\) has \(n + n - 1 = 2n - 1\) vertices. Let \(v_1, v_2, v_3, \ldots, v_{2n-1}\) be the vertices, where \(v_i\) is adjacent to \(v_{i+1}, i = 1, 2, 3, \ldots, 2n - 2\). Therefore,

\[
\sigma(v_i) = \left(\frac{(2n-1)^2 + (2n-1)}{2} + i(i - (2n - 1) - 1) \right)
\]

\[
= n(2n - 1) + i(i - 2n)
\]

\[
\sigma(v_{i+1}) = n(2n - 1) + (i + 1)[(i + 1) - 2n]
\]

\[
[\sigma(u) + \sigma(v) - 2] = 2n(2n - 1) + i(i - 2n) + (i + 1)[(i + 1) - 2n] - 2
\]

\[
[\sigma(u) \cdot \sigma(v)] = [n(2n - 1) + i(i - 2n)][n(2n - 1) + (i + 1)[(i + 1) - 2n]].
\]

Hence,

\[
ABCS[(P_n)] = \sum_{i=1}^{2n-2} \sqrt{\frac{2n(2n-1) + i(i - 2n) + (i + 1)[(i + 1) - 2n] - 2}{[n(2n-1) + i(i - 2n)][n(2n-1) + (i + 1)[(i + 1) - 2n]]}}.
\]

\(\square\)
Example 3. From the figure in, \(S(P_4) \). If \(v_1, v_2, v_3 \) are the subdivision vertices then, \(\sigma(u_1) = 21, \sigma(v_1) = 16, \sigma(u_2) = 13, \sigma(v_2) = 12, \sigma(u_3) = 13, \sigma(v_3) = 16, \sigma(v_4) = 21 \), and also

\[
ABCS[S(P_4)] = \sum_{uv \in E[S(P_4)]} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u \sigma_v}} = \sqrt{\frac{21 + 16 - 2}{(21)(16)}} + \sqrt{\frac{13 + 16 - 2}{(13)(16)}} + \sqrt{\frac{13 + 12 - 2}{(13)(12)}} + \sqrt{\frac{13 + 16 - 2}{(13)(16)}} + \sqrt{\frac{21 + 16 - 2}{(21)(16)}}
\]

\[= 0.3227 + 0.3602 + 0.3839 + 0.3839 + 0.3602 + 0.3227 = 2.1336.\]

By the formula given in Theorem 5.3

\[
ABCS[S(P_4)] = \sum_{i=1}^{6} \sqrt{\frac{56 + i(i-8) + (i+1)[(i+1)-8]-2}{[28 + i(i-8)][28 + (i+1)[(i+1)-8]]}} = 2.1336.
\]

Theorem 5.4. For a cycle \(C_n, n \geq 3 \) on \(n \) vertices,

\[
ABCS[S(C_n)] = \frac{2}{n} \left(\sqrt{2n^2 - 2} \right).
\]

Proof. The subdivision graph of \(C_n \) has \(2n \) vertices. For any vertex \(u \) of \(S(C_n) \), \(\sigma(u) = 2 \left[1 + 2 + \cdots + \frac{n-1}{2} \right] + \frac{n}{2} = \frac{(2n)^2}{4} = n^2 \). Therefore, \(ABCS(C_n) = 2n \times \sqrt{\frac{2n^2 - 2}{n^4}} = \frac{2}{n} \left(\sqrt{2n^2 - 2} \right) \). \(\square \)
Example 4. Let \(v_i, i = 1, 2, 3, 4 \) be the subdivision vertices then from the above figure 4 in \(S(C_4) \), \(\sigma(u_i) = \sigma(v_i) = 16, i = 1, 2, 3, 4 \). Then, \(ABCS[S(P_4)] = \sum_{uv \in E[S(C_4)]} \sqrt{\frac{\sigma_u + \sigma_v - 2}{\sigma_u \sigma_v}} = 8 \sqrt{\frac{16 + 16 - 2}{16(16)}} = 2.7386 \).

By the formula, \(ABCS[S(C_n)] = 2 \sqrt{\frac{2n^2 - 2}{2n^2 - 2 - d(u)}} = 2 \sqrt{\frac{\sqrt{32} - 2}{4}} = 2.7386 \).

6. Atom-bond connectivity status index of graphs formed by using the complete graph

In this section we have obtained the atom-bond connectivity status index of some graphs, which are defined in [1].

Proposition 6.1. For a complete graph \(K_n \) with \(n \geq 3 \), let \(e_i, i = 1, 2, \ldots, k \), \(1 \leq k \leq n - 2 \), be the distinct edges all being incident with a single vertex. The graph \(K_{a_n}(k) \) is obtained by deleting \(e_i, i = 1, 2, \ldots, k \) from \(K_n \). Then,

\[
ABCS(K_{a_n}(k)) = [n - k - 1] \times \sqrt{\frac{2n + k - 4}{n(n - 1)}} + \left[\frac{k(k - 1)}{2} \right] \times \sqrt{\frac{2n - 4}{(n - 1)^2}}.
\]

Proof. By the equality part of Theorem 3.1,

\[
ABCS(G) = \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [d(u) + d(v)]}{(2n - 2 - d(u))(2n - 2 - d(v))}}.
\]

The edge set \(E(K_{a_n}(k)) \) can be partitioned into four sets \(E_1, E_2, E_3 \) and \(E_4 \), where \(E_1 = \{uv/d(u) = n - 1 - k \text{ and } d(u) = n - 1\} \), \(E_2 = \{uv/d(u) = n - 2 \text{ and } d(u) = n - 2\} \), \(E_3 = \{uv/d(u) = n - 2 \text{ and } d(u) = n - 1\} \), \(E_4 = \{uv/d(u) = n - 1 \text{ and } d(u) = n - 1\} \), with \(|E_1| = n - k - 1 \), \(|E_2| = (k - 1)/2 \), \(|E_3| = (n - k - 1)k \), \(|E_4| = (n - k - 1)(n - k - 2)/2 \). Also \(\text{diam}(K_{a_n}(k)) = 2 \).
Therefore,

\[\text{ABCS} (K_{a_n}(k)) = \sum_{uv \in E(G)} \sqrt{\frac{4n - 6 - [n - 1 - k + n - 1]}{(2n - 2 - (n - 1 - k)) (2n - 2 - (n - 1))}}\]

\[+ \sum_{uv \in E_2(G)} \sqrt{\frac{4n - 6 - [n - 2 + n - 2]}{(2n - 2 - (n - 2)) (2n - 2 - (n - 2))}}\]

\[+ \sum_{uv \in E_3(G)} \sqrt{\frac{4n - 6 - [n - 2 + n - 1]}{(2n - 2 - (n - 2)) (2n - 2 - (n - 1))}}\]

\[+ \sum_{uv \in E_4(G)} \sqrt{\frac{4n - 6 - [n - 1 + n - 1]}{(2n - 2 - (n - 1)) (2n - 2 - (n - 1))}}.\]

Therefore

\[\text{ABCS}(K_{a_n}(k)) = \sum_{uv \in E_1(G)} \sqrt{\frac{2n + k - 4}{n(n-1)}} + \sum_{uv \in E_2(G)} \sqrt{\frac{2n - 2}{n^2}}\]

\[+ \sum_{uv \in E_3(G)} \sqrt{\frac{2n - 3}{n(n-1)}} + \sum_{uv \in E_4(G)} \sqrt{\frac{2n - 4}{(n-1)^2}}.\]

Hence,

\[\text{ABCS}(K_{a_n}(k)) = [n - k - 1] \times \sqrt{\frac{2n + k - 4}{n(n-1)}} + \left[\frac{k(k-1)}{2} \right]\]

\[\times \sqrt{\frac{2n - 2}{n^2}} + [(n - k - 1)k] \times \sqrt{\frac{2n - 3}{n(n-1)}}\]

\[+ \left[\frac{(n - k - 1)(n - k - 2)}{2} \right] \times \sqrt{\frac{2n - 4}{(n-1)^2}}.\]

\[\square\]

Proposition 6.2. For a complete graph \(K_n\) with \(n \geq 3\), let \(f_i, i = 1, 2, \ldots, k, 1 \leq k \leq \lfloor n/2 \rfloor\), be independent edges. The graph \(K_{b_n}(k)\) is obtained by deleting \(f_i,\)
Therefore, $i = 1, 2, \ldots, k$ edges from K_n. Then,

$$ABCS(Kb_n(k)) = [2k(n-2k)] \times \sqrt{\frac{2n-3}{n(n-1)}} + \left[\frac{(n-2k)(n-2k-1)}{2} \right] \times \sqrt{\frac{2n-4}{(n-1)^2}} + \left(\frac{2k(2k-1)}{2} \right) - k \times \sqrt{\frac{2n-2}{n^2}}.$$

Proof. The edge set $E(Kb_n(k))$ can be partitioned into three sets E_1, E_2 and E_3, where $E_1 = \{uv/d(u) = n-2$ and $d(v) = n-1\}$, $E_2 = \{uv/d(u) = n-1$ and $d(v) = n-1\}$, $E_3 = \{uv/ d(u) = n-2$ and $d(v) = n-2\}$. It is easy to check that $|E_1| = 2k(n-2k)$, $|E_2| = ((n-2k)(n-2k-1)/2)$ and $|E_3| = (2k(2k-1)/2) - k$.

Also $diam((Kb_n(k)) = 2$.

By the equality part of Theorem 3.1,

$$ABCS(G) = \sum_{uv \in E(G)} \sqrt{\frac{4n-6 - [d(u) + d(v)]}{(2n-2 - d(u))(2n-2 - d(v))}}$$

$$ABCS(Kb_n(k)) = \sum_{uv \in E_1(G)} \sqrt{\frac{4n-6 - [n-2 + n-1]}{(2n-2 - (n-2))(2n-2 - (n-1))}}$$

$$+ \sum_{uv \in E_2(G)} \sqrt{\frac{4n-6 - [n-1 + n-1]}{(2n-2 - (n-1))(2n-2 - (n-1))}}$$

$$+ \sum_{uv \in E_3(G)} \sqrt{\frac{4n-6 - [n-2 + n-2]}{(2n-2 - (n-2))(2n-2 - (n-2))}}.$$

Therefore,

$$ABCS(Kb_n(k)) = \sum_{uv \in E_1(G)} \sqrt{\frac{2n-3}{n(n-1)}} + \sum_{uv \in E_2(G)} \sqrt{\frac{2n-4}{(n-1)^2}} + \sum_{uv \in E_3(G)} \sqrt{\frac{2n-2}{n^2}}.$$

Hence,

$$ABCS(Kb_n(k)) = [2k(n-2k)] \times \sqrt{\frac{2n-3}{n(n-1)}} + \left[\frac{(n-2k)(n-2k-1)}{2} \right] \times \sqrt{\frac{2n-4}{(n-1)^2}} + \left(\frac{2k(2k-1)}{2} \right) - k \times \sqrt{\frac{2n-2}{n^2}}.$$

□
Proposition 6.3. For a complete graph K_n, $n \geq 3$, let V_k be a k-element subset of the vertex set $2 \leq k \leq n-1$. The graph $K_{c_n}(k)$ is obtained by deleting from all the edges connecting pairs of vertices from V_k. Then,

$$ABCS(K_{c_n}(k)) = [(n-k)k] \times \sqrt{\frac{2n+k-5}{(n-2+k)(n-1)}} + \left(\frac{(n-k)(n-k-1)}{2}\right) \times \sqrt{\frac{2n-4}{(n-1)^2}}.$$

Proof. The edge set $E(K_{c_n}(k))$ can be partitioned into two sets E_1 and E_2, where $E_1 = \{uv/d(u) = n-k \text{ and } d(v) = n-1\}$ and $E_2 = \{uv/d(u) = n-1 \text{ and } d(v) = n-1\}$. Also $|E_1| = (n-k)k$, $|E_2| = (n-k)(n-k-1)/2$. and $\text{diam}(K_{b_n}(k)) = 2$.

By the equality part of Theorem 3.1,

$$ABCS(K_{c_n}(k)) = \sum_{uv \in E_1(G)} \sqrt{\frac{4n-6-[n-k+n-1]}{(2n-2-(n-k))(2n-2-(n-1))}} + \sum_{uv \in E_2(G)} \sqrt{\frac{4n-6-[n-1+n-1]}{(2n-2-(n-1))(2n-2-(n-1))}}.$$

Therefore,

$$ABCS(K_{c_n}(k)) = \sum_{uv \in E_1(G)} \sqrt{\frac{2n+k-5}{(n-2+k)(n-1)}} + \sum_{uv \in E_2(G)} \sqrt{\frac{2n-4}{(n-1)^2}}.$$

Hence the result follows. \qed

Proposition 6.4. For a complete graph K_n with $n \geq 5$, let $3 \leq k \leq n$. The graph $K_{d_n}(k)$ is obtained by deleting from K_n, the edges belonging to a k-membered cycle. Then

$$ABCS(K_{d_n}(k)) = \left[\frac{k(k-1)}{2} - k\right] \times \sqrt{\frac{2n}{(n+1)^2}} + [(n-k)k] \times \sqrt{\frac{2n-2}{(n-1)(n-1)}} + \left(\frac{(n-k)(n-k-1)}{2} - k\right) \times \sqrt{\frac{2n-4}{(n-1)^2}}.$$

Proof. The edge set $E(K_{d_n}(k))$ can be partitioned into three sets E_1, E_2 and E_3, where $E_1 = \{uv/d(u) = n-3 = d(v)\}$, $E_2 = \{uv/d(u) = n-3 \text{ and } d(v) = n-1\}$, E_3
\[uv / d(u) = n - 1 = d(v) \]. It is easy to check that and \(|E_1| = (k(k-1)/2) - k, |E_2| = (n-k)k \] and \(|E_3| = ((n-k)(n-k-1)/2). Also \(\text{diam}(Kd_n(k)) = 2\).

By the equality part of Theorem 3.1,

\[
ABCS(Kd_n(k)) = \sum_{uv \in E_1(G)} \sqrt{\frac{2n}{(n+1)^2}} + \sum_{uv \in E_2(G)} \sqrt{\frac{2n-2}{(n+1)(n-1)}} + \sum_{uv \in E_3(G)} \sqrt{\frac{2n-4}{(n-1)^2}}.
\]

Hence the result follows. \(\square\)

7. Conclusion

In this paper we have obtained bounds for the atom-bond connectivity status index of graph in terms of degree and diameter. Gave alternate proof of atom-bond connectivity status index of some standard graphs. Obtained atom-bond connectivity status index of subdivision graph of some graphs and edge deleted graph obtained from complete graph.

References

DEPARTMENT OF MATHEMATICS
KLE Dr. M. S. Sheshgiri College of Engineering and Technology
Belagavi-590008, Karnataka, India
Email address: revankards@gmail.com

RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS
KLE Dr. M. S. Sheshgiri College of Engineering and Technology
Belagavi-590008, Karnataka, India
Faculty, Department of Mathematics
KLS Gogte Institute of Technology
Belagavi-590008, Karnataka, India
Email address: priyanka18hande@gmail.com

DEPARTMENT OF MATHEMATICS
Vishwanathrao Deshpande Institute of Technology
Haliyal-581329, India
Email address: handesp1313@gmail.com