RECURRENCE RELATION UNDER EFROS THEOREM

Roshani Sharma and Bhupendra Tripathi

ABSTRACT. In the present manuscript, we apply Efros theorem to establish certain recurrence relation. The established results supposed to be new and general. By giving particular values to the parameters, a number of new and known results can be established.

1. INTRODUCTION

First, we will give a brief account of the Efros theorem, Laplace transform [1] and Parseval Goldstein theorem [4], which will be used to derive our main theorem.

(a) The Efros theorem [5] states that if G(p) and q(p) are two analytic function given by:

\[F(p) = L[f(t)], \]
\[G(p)e^{-\tau q(p)} = L[g(t, \tau)] , \]

then

\[G(p)F(q(p)) = L \left[\int_{0}^{\infty} f(\tau)g(t, \tau)d\tau \right] . \]
(b) Laplace transform can be defined as follows
\[f(p) = L[f(t); p] = f(p) = \int_0^\infty e^{-pt} f(t) dt, \]

(c) Parseval-Goldstein theorem states that if \(\phi_1(p) = L[h_1(t)] \) and \(\phi_2(p) = L[h_2(t)] \), then
\[\int_0^\infty \phi_1(t) h_2(t) dt = \int_0^\infty \phi_2(t) h_1(t) dt. \]

2. Main Result

Theorem 2.1. If \(\lambda > n - 1, R(\sigma + \lambda + 1) > 0, (p + a) > 0, \)
\[F(p) = L[f(t)], \]
and
\[G(p)e^{-\tau q(p)} = L[g(t, \tau)], \]
then
\[L\left[t^n (t + a)^{-\lambda - 1} G(t)e^{-\tau q(t)}; p \right] = \sum_{r=0}^{n} \left(-1 \right)^{n-r} \frac{a^{n-r}}{\Gamma(\lambda - r + 1)} \frac{n!}{C_r b^{n-r} t^{\lambda-r}}. \]

where \(f(t) = o(t) \) for some \(t \) and \(f(t) = O(e^{-ctt^\mu}) \) for large \(t \).

Proof. Since from (2), p. 127, we have
\[g(r) = \int_0^\infty e^{-pt} f(t) dt, \]
\[g(r) = \int_0^\infty e^{-pt} t^\lambda dt. \]

Now \(L\left[t^n \left(t + a \right)^{-\lambda - 1} G(t)e^{-\tau q(t)}; p \right] = \sum_{r=0}^{n} \left(-1 \right)^{n-r} \frac{a^{n-r}}{\Gamma(\lambda - r + 1)} \frac{n!}{C_r b^{n-r} t^{\lambda-r}}. \)

Further, by virtue of Leibnitz theorem we have
\[\frac{d^n}{dt^n} (t^\lambda e^{-bt}) = e^{-bt} \sum_{r=0}^{n} \left(-1 \right)^{n-r} \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda - r + 1)} \Gamma(\lambda - r + 1) \frac{n!}{C_r b^{n-r} t^{\lambda-r}}. \]

Therefore, if we take \(f(t) = t^\lambda e^{-bt}, p^n L[f(t); p] = L[f^n(t); p] \), where \(f(0) = f'(0) = f''(0) \ldots f^{n-1}(0) \) and \(f^n(t) \) stands for \(\frac{d^n}{dt^n} [f(t)] \), then
\[\Gamma(\lambda + 1) p^n (p + b)^{-\lambda - 1} = L\left[e^{-bt} \sum_{r=0}^{n} \left(-1 \right)^{n-r} \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda - r + 1)} \Gamma(\lambda - r + 1) \frac{n!}{C_r b^{n-r} t^{\lambda-r}}; p \right]. \]
Using Parseval Goldstein theorem [4] in the above equation (1.1) and (2.1), we get
\[
\int_0^\infty e^{-at}t^n(t + b)^{-\lambda - 1}G(t)e^{-\tau(q(t))}dt = \sum_{r=0}^n \frac{(-1)^{n-r}b^{n-r}}{\Gamma(\lambda - r + 1)}\int_0^\infty x^{\lambda - r}e^{-bx}g(x, \tau)dx.
\]
Replacing \(b \) as \(a \) and \(a \) as \(p \) then we get
\[
\int_0^\infty e^{-at}t^n(t + a)^{-\lambda - 1}G(t)e^{-\tau(q(t))}dt = \sum_{r=0}^n \frac{(-1)^{n-r}a^{n-r}}{\Gamma(\lambda - r + 1)}\int_0^\infty x^{\lambda - r}e^{-bx}g(x, \tau)dx.
\]
(2.2)

which is supposed to be new result.

Taking \(\tau = 0 \) in the above equation (2.2), then we get
\[
(2.3) \quad L[t^n(t + a)^{-\lambda - 1}G(t); p] = \sum_{r=0}^n \frac{(-1)^{n-r}a^{n-r}}{\Gamma(\lambda - r + 1)}\int_0^\infty x^{\lambda - r}e^{-bx}g(x, \tau)dx.
\]

3. Example

If we take \(f(t) = t \), then ([2], p. 137), we have \(L[t^\nu; p] = \Gamma(\nu + 1)p^{-\nu - 1}, R(\nu) > -1 \) and \(R(p) > 0 \). Substituting this value in the above equation (2.3), we get
\[
L[t^{n+\nu}(t + a)^{-\lambda - 1}; p] = \Gamma(\nu + 1)\sum_{r=0}^n \frac{(-1)^{n-r}a^{n-r}}{\Gamma(\lambda - r + 1)}\int_0^\infty e^{-ax}x^{\lambda - r}p^{-\nu - 1}dx.
\]

Solving the right-hand side with the help of the result ([2], p. 129), we get
\[
L[t^{\lambda - 1}(t + a)^{-\nu}; p] = \frac{p^{-\lambda}a^{-\nu}}{\Gamma(\nu)}E[\lambda; \nu :: ap],
\]
where \(R(\lambda) > 0, R(p) > 0, \)
\[
\sum_{r=0}^n \frac{(-1)^{n-r}(ap)^n}{\Gamma(\lambda - r + 1)}nC_r E[\lambda - r + 1, \nu + 1 :: ap]
\]
(3.1)

= \frac{1}{\Gamma(\lambda + 1)}E[n + \nu + 1, \lambda + 1 :: ap].
Now, with the help of the result [7]:

\[E[\mu, \lambda :: x] = \Gamma(\mu)\Gamma(\lambda)e^{x^2}x^{-\frac{1}{2}(1-\mu-\lambda)}W^{(x)}_{\left(\frac{1-\mu-\lambda}{2}\right)} \]

(3.1) can be written as follows

\[\sum_{r=0}^{n} (-1)^{n-r} nC_r x^{\frac{n-r}{2}}W_{\left(k+\frac{r}{2}, m+\frac{r}{2}\right)} = \frac{\sqrt{m+n-k+1}}{\sqrt{m-k+\frac{1}{2}}} W_{\left(k-r, m+\frac{r}{2}\right)} \]

On taking \(n = 1 \), (3.2) gives rise to result ([6], p. 27)

\[\left(m - k + \frac{1}{2}\right) W_{\left(k-\frac{1}{2}, m+\frac{1}{2}\right)} + x^\frac{1}{2}W_{k,m} = W_{\left(k+\frac{1}{2}, m+\frac{1}{2}\right)} \]

Now, substituting in the above result (3.2) \(x = \frac{1}{2}y^2 \) and multiplying both side by \(e^{\frac{3}{4}y^2}y^{\nu-2m-n-1} \), we get

\[\sum_{r=0}^{n} (-1)^{n-r} nC_r \frac{e^{\frac{3}{4}y^2}y^{\nu-2m-n-\frac{1}{2}}}{2^{2}2^{-\frac{1}{2}}} W_{\left(k+\frac{r}{2}, m+\frac{r}{2}\right)} \]

(3.3)

Taking images in Hankel transform ([3]; p. 84) of both the side of (3.3) and substituting \(k + \frac{3m}{4} - \frac{\nu}{4} - \frac{1}{4}, k + \frac{m}{2} + \frac{\nu}{2} + \frac{1}{4} \) and \(\frac{\nu^2}{2} \) as \(k, m \) and \(x \) respectively, we get

\[\sum_{r=0}^{n} \frac{\Gamma\left(m-n-k+\frac{1}{2}\right)}{\Gamma\left(m-k+n+\frac{1}{2}\right)} (-1)^{n-r} nC_r W_{\left(k-r, m\right)} = x^{\frac{1}{2}}W_{\left(k+r, m+\frac{1}{2}\right)} \]

(3.4)

On taking \(n = 1 \), (3.4) gives rise to result ([6], p. 27).

REFERENCES

DEPARTMENT OF MATHEMATICS,
LAKSHMI NAIRAN COLLEGE OF TECHNOLOGY,
BHOPAL-462021, MADHYA PRADESH, INDIA.
Email address: roshnipsharma@gmail.com

DEPARTMENT OF MATHEMATICS,
LAKSHMI NAIRAN COLLEGE OF TECHNOLOGY,
BHOPAL-462021, MADHYA PRADESH, INDIA.
Email address: btripathirewa@yahoo.co.in