BUFFON’S COIN AND NEEDLE PROBLEMS FOR THE RHOMBITRIHEXAGONAL TILING

Salvatore Vassallo

ABSTRACT. In this paper we consider the rhombitrihexagonal tiling of the plane (3, 4, 6, 4) Archimedean tiling and compute the probability that a random circle or a random segment intersects a side of the tiling.

1. INTRODUCTION

A tiling or tessellation in the plane is a collection of disjoint closed sets (the tiles) that can intersect only on the boundary, which cover the plane. A tiling is said to be polygonal if the tiles are polygon, a polygonal tiling is said to be edge-to-edge if two non disjoint tiles have in common or a vertex or a segment that is an edge for both the polygons. In this case we call any edge of a tile an edge of the tiling. An edge-to-edge tiling is called regular if it is composed of congruent copies of a single regular polygon. An Archimedean tessellation (semi-regular or uniform tessellation) is an edge-to-edge tessellation of the plane made of more than one type of regular polygon so that the same polygons surround each vertex. There are eight different Archimedean tilings and we can classify them giving the types of polygons as they come together at the vertex [10]. The rhombitrihexagonal tiling

2020 Mathematics Subject Classification. 60D05, 52A22.
Key words and phrases. Geometric probability, stochastic geometry, random sets, random convex sets and integral geometry.
Submitted: 28.02.2022; Accepted: 16.03.2022; Published: 18.03.2022.
is a tiling such that a triangle, a square, an hexagon and a square come together (in clockwise order) in any vertex so it can be called a \((3,4,6,4)\) Archimedean tiling (see Figure 1a).

![Figure 1a. The tiling \(R\)](image)

Many authors studied Buffon type problems for different lattices of figures or tilings and different test bodies: See for example [15], [6], [7], [8], [9], [5], [3], [1], [4], [2], [17], [16], [11], [12], [23].

In particular the cases of the \((3^3,4^2)\), of the \((3^2,4,3,4)\), of the \((8^2,4)\), of the \(((3,6,3,6)\) and of the \((3^4,6)\)Archimedean tilings (elongated triangular tiling, snub square tiling, truncated square tiling, trihexagonal tiling and snub hexagonal tiling) are studied in [18], [19], [20], [21], and [22], respectively.

We will study Buffon type problems for the rhombitrihexagonal tiling and two special test bodies: a circle of constant diameter \(D\) and a line segment of length \(l\).

Let \(E_2\) be the Euclidean plane and let \(R\) be the rhombitrihexagonal tiling of \(E_2\) given in figure 1a. We denote by \(T_0\) the fundamental tile (or cell) of \(R\) (see figure 1b) and by \(T_n\) one of congruent copies of \(T_0\) such that:

1. \(\bigcup_{n \in \mathbb{N}} T_n = E_2\),
2. \(\text{Int}(T_i) \cap \text{Int}(T_j) = \emptyset, \forall i, j \in \mathbb{N} \text{ and } i \neq j\),
3. \(T_n = \gamma_n(T_0), \forall n \in \mathbb{N}\), where \(\gamma_n\) are the elements of a discrete subgroup of the group of motions in \(E_2\) that leaves invariant the tiling \(R\).

The body \(T_0\) can be expressed as the union of a regular hexagon, three squares and two equilateral triangles, all of the same side \(a\).

Let us denote by \(K\) a convex body (which means here a compact convex set) which we shall call test body. A general problem of Buffon type can be stated as
follows: “Which is the probability \(p_{K,\mathcal{R}} \) that the random convex body \(K \), or more precisely, a random congruent copy of \(K \), meets some of the boundary points of at least one of the domains \(T_n \)? ”

If we denote by \(\mathcal{M} \) the set of all test bodies \(K \) whose centroid is in the interior of \(T_0 \) and by \(\mathcal{N} \) the set of all test bodies \(K \) that are completely contained in one of the two triangles or in one of the three squares or in the hexagon \(ABCDEF \), we have

\[
(1.1) \quad p_{K,\mathcal{R}} = 1 - \frac{\mu(\mathcal{N})}{\mu(\mathcal{M})},
\]

where \(\mu \) is the Lebesgue measure in the plane \(\mathbb{E}^2 \).

2. The test body is a circle

Let us suppose that the test body \(K \) is a circle of diameter \(D \). Easy geometrical considerations will lead us to distinguish between the cases \(D < \frac{a}{\sqrt{3}} \) (the diameter of the circle inscribed in the triangle), \(\frac{a}{\sqrt{3}} \leq D < a \) (the diameter of the circle inscribed in the square), \(a \leq D < a\sqrt{3} \) (the diameter of the circle inscribed in the hexagon) and \(D \geq a\sqrt{3} \). It is obvious that if \(D \geq a\sqrt{3} \) the circle always meets the boundary of one of the bodies \(T_n \), so we have to study the other three cases.

Proposition 2.1. The probability that the circle \(K \) of diameter \(D \) intersects the tiling \(\mathcal{R} \) is given by

\[
(2.1) \quad p_{K,\mathcal{R}} = \begin{cases}
\frac{D[12a-(2\sqrt{3}+3)D]}{(3+2\sqrt{3})\pi a^2}, & \text{if } D < \frac{a}{\sqrt{3}}, \\
\frac{\sqrt{3}a^2+18aD-(\sqrt{3}+6)D^2}{2(3+2\sqrt{3})\pi a^2}, & \text{if } \frac{a}{\sqrt{3}} \leq D < a, \\
\frac{(6+\sqrt{3})a^2+6aD-\sqrt{3}D^2}{2(3+2\sqrt{3})\pi a^2}, & \text{if } a \leq D < a\sqrt{3}.
\end{cases}
\]

Proof. We compute the measures \(\mu(\mathcal{M}) \) et \(\mu(\mathcal{N}) \) with help of the elementary kinematic measure \(dK = dx \wedge dy \wedge d\phi \) of \(E_2 \) (see [13], [14]) where \(x \) and \(y \) are the coordinates of the center of \(K \) (or the components of a translation), and \(\phi \) is the angle of rotation. We have

\[
\mu(\mathcal{M}) = \int_0^\pi d\phi \int_{(x,y)\in T_0} dxdy = \pi \cdot \text{area}(T_0) = \left(3+2\sqrt{3}\right)\pi a^2.
\]
Let \mathcal{N}_1 be the set of circles of diameter D that are contained in the triangle BHK, \mathcal{N}_2 be the set of circles of diameter D that are contained in the square $BKJC$ and \mathcal{N}_3 be the set of circles of diameter D that are contained in the hexagon $ABCDEF$. From (1.1) we obtain

\begin{equation}
 p_{K,R} = 1 - \frac{2\mu(\mathcal{N}_1) + 3\mu(\mathcal{N}_2) + \mu(\mathcal{N}_3)}{(3 + 2\sqrt{3})\pi a^2}.
\end{equation}

From figure 2a it is easy to see that $\mu(\mathcal{N}_1)$ is π times the area of the triangle $B_3H_3K_3$ whose sides are parallel to the sides of the triangle BHK at distance $D/2$ from them (B_3 is the center of a disk interior to the triangle BHK and tangent to the sides BH and BK and so on). Since the side of the triangle is $a - D\sqrt{3}$ we have:
\[\mu(N_1) = \frac{\pi \sqrt{3}}{4} (a - \sqrt{3}D)^2. \]

In the same way we obtain that \(\mu(N_2) = \pi (a - D)^2 \) and

\[\mu(N_3) = \frac{3\pi \sqrt{3} \left(a - \frac{D}{\sqrt{3}} \right)^2}{2}. \]

Then we have for the case \(D < \frac{a}{\sqrt{3}} \)

\[p_{K,R} = \frac{D \left[12a - (2\sqrt{3} + 3) \right] D}{(3 + 2\sqrt{3}) \pi a^2}. \]

Let \(\frac{a}{\sqrt{3}} \leq D < a \) (see figure 2b). If the center of the circle \(K \) is in the triangle \(BHK \), the circle always intersects one of the side of the triangle so that \(\mu(N_1) = 0 \).

The measures \(\mu(N_2) \) and \(\mu(N_3) \) are as in previous case so:

\[p_{K,R} = \frac{\sqrt{3}a^2 + 18aD - (\sqrt{3} + 6)D^2}{2 (3 + 2\sqrt{3}) \pi a^2}. \]

Finally, if \(a \leq D < a\sqrt{3} \), we have \(\mu(N_1) = \mu(N_2) = 0 \), since a circle with the center in a square (a triangle, respectively) of the tiling, always intersects one of the side.

As

\[\mu(N_3) = \frac{3\pi \sqrt{3} \left(a - \frac{D}{\sqrt{3}} \right)^2}{2}, \]

we obtain

\[p_{K,R} = \frac{(6 + \sqrt{3}) a^2 + 6aD - \sqrt{3}D^2}{2 (3 + 2\sqrt{3}) \pi a^2}. \]

\[\square \]

The graphic of the probability \(p_{K,R} \) is
Let us observe that \(p_{K,R} \geq \frac{1}{2} \) for \(D > \frac{10\sqrt{3}-\sqrt{118}}{26} \approx 0.24837 \) i.e. also for “small” circles.

3. The test body is a line segment

Let us consider now the case \(K \) is a line segment of length \(l \). Also in this case easy geometrical considerations give us six cases: \(l < a \sqrt{\frac{3}{2}} \) (the minimal width of the triangle), \(\frac{a \sqrt{3}}{2} \leq l < a \) (the diameter of the triangle = the minimal width of the square), \(a \leq l < a \sqrt{2} \) (the diameter of the square), \(a \sqrt{2} \leq l < a \sqrt{3} \) (the minimal width of the hexagon), \(a \sqrt{3} \leq l < 2a \) (the diameter of the hexagon), and \(l \geq 2a \). In the last case the segment always intersects the boundary of one of the bodies \(T_n \), so we have to study the other cases. We have

Proposition 3.1. The probability that the line segment \(K \) of length \(l \) intersects the tiling \(\mathcal{R} \) is given by

\[
(3.1) \quad p_{K,R} = \begin{cases} \\
\tau l \left[144a \sqrt{3} - \left(\pi \sqrt{3} + 36 \right) l \right] & \text{if } l < \frac{a \sqrt{3}}{2} \\
\tau \left[144al - l^2 \left(36 + \pi \sqrt{3} \right) - \right. \\
-27a \sqrt{4l^2 - 3a^2} + 6 \sqrt{3} \left(3a^2 + 2l^2 \right) \arccos \left(\frac{a \sqrt{3}}{2l} \right) \right] & \text{if } \frac{a \sqrt{3}}{2} \leq l < a \\
3 \tau \left[\left(12 - \pi \sqrt{3} \right) a^2 + 2 \sqrt{3} \left(3a^2 + 2l^2 \right) \arcsin \left(\frac{a \sqrt{3}}{2l} \right) \right] + \\
+ \left(6 - \pi \sqrt{3} \right) l^2 - 24a \sqrt{l^2 - a^2} - 9a \sqrt{4l^2 - a^2} + \\
24a^2 \arccos \left(\frac{a}{l} \right) \right] & \text{if } a \leq l < a \sqrt{2} \\
3 \tau \left[\left(6 - \sqrt{3} \right) \pi a^2 - \pi \sqrt{3} l^2 + 9a \sqrt{4l^2 - 3a^2} + \\
+ 2 \sqrt{3} \left(3a^2 + 2l^2 \right) \arcsin \left(\frac{a \sqrt{3}}{2l} \right) \right] & \text{if } a \sqrt{2} \leq l < a \sqrt{3} \\
\tau \left[\left(9 + 2\pi \sqrt{3} \right) l^2 - 6 \sqrt{3} \left(l^2 + 12a^2 \right) \arcsin \left(\frac{a \sqrt{3}}{l} \right) \right] + \\
+ 18 \left(\pi (1 + 2\sqrt{3}) + 3 \right) a^2 - 90a \sqrt{l^2 - 3a^2} & \text{if } a \sqrt{3} \leq l < 2a, \\
\end{cases}
\]
where \(\tau = \frac{1}{6 (3 + 2\sqrt{3}) \pi a^2} \).

Proof.

i) First of all let us compute the measure \(\mu(N_1) \) of all line segments of length \(l \) contained in the triangle \(BHK \). If \(l < \frac{a \sqrt{3}}{2} \), for a fixed angle \(\phi \in [0, \frac{\pi}{6}] \) we denote by (see figure 3a)

- \(B' \) the midpoint (in \(BHK \)) of the line segment of length \(l \) with one endpoint in \(B \) that makes an angle \(\phi \) with \(BH \);
- \(H' \) the midpoint of the line segment of length \(l \) with endpoints on \(BH \) and \(HK \) that makes an angle \(\phi \) with \(BH \);
- \(K' \) the midpoint of the line segment of length \(l \) with endpoints on \(HK \) and \(BH \) that makes an angle \(\phi \) with the direction of \(BH \).

We compute

\[
\text{area}(B'H'K') = \frac{\sqrt{3}}{4} \left[a - \frac{2l}{\sqrt{3}} \sin \left(\frac{2\pi}{3} - \phi \right) \right]^2,
\]

and, by symmetry, we obtain

\[
\mu(N_1) = 6 \int_0^{\pi/6} \text{area}(B'H'K')d\phi = \int_0^{\pi/6} \frac{\sqrt{3}}{4} \left[a - \frac{2l}{\sqrt{3}} \sin \left(\frac{2\pi}{3} - \phi \right) \right]^2 d\phi
\]

\[
= \frac{3\sqrt{3}\pi a^2 - 36al + (9 + 2\sqrt{3}\pi) l^2}{12}.
\]
Let now $\frac{\sqrt{3}}{2} \leq l < a$. With reference to figure 3b, it is easy to see that the line segment can be contained in the triangle BHK only if the angle $\phi \in [0, \pi/6]$ between the line segment and the side BH satisfies $0 \leq \phi < \frac{\pi}{6} - \arccos \frac{\sqrt{3}a}{2l}$. Since the length of the side of the equilateral triangle $B'H'K'$ is $a - \frac{2l}{\sqrt{3}} \sin \left(\frac{\pi}{3} - \phi \right)$, the measure of the line segments completely contained in the triangle BHK is, by symmetry,

$$
\mu(N_1) = 6 \int_{0}^{\frac{\pi}{6} - \arccos \frac{\sqrt{3}a}{2l}} \frac{\sqrt{3}}{4} \left[a - \frac{2l}{\sqrt{3}} \sin \left(\frac{2\pi}{3} - \phi \right) \right]^2 d\phi =
$$

$$
= \frac{1}{12} \left[9l^2 - 36al + \pi \sqrt{3} (3a^2 + 2l^2) + 27a \sqrt{4l^2 - 3a^2} - 6 \sqrt{3} (3a^2 + 2l^2) \arccos \left(\frac{a \sqrt{3}}{2l} \right) \right].
$$

Finally if $l \geq a$ the line segment K always intersects at least one side of the triangle BHK and so $N_1 = 0$.

ii) Let us compute now the measure $\mu(N_2)$ of the line segments completely contained in the square $BKJC$.

If $l < a$ the segment K does not meets the square if its centroid is in the rectangle $B'K'J'C'$ whose sides have length $a - l \cos \phi$ and $a - l \sin \phi$ (see figure 4a).

\[\text{Figure 4. The case } K \text{ = line segment, } K \text{ in the square}\]

The measure of the line segment completely contained in the square is:
\[\mu(N_2) = 4 \int_0^{\pi/4} (a - l \cos \psi) (a - l \sin \psi) \, d\psi = \pi a^2 - 4al + l^2. \]

If \(a \leq l < a\sqrt{2} \) the line segment \(K \) can be contained in the square \(BKJC \) only if the angle \(\phi \in [0, \pi/4] \) between the line segment and the side \(BK \) satisfies \(\arccos \frac{a}{l} < \phi \leq \frac{\pi}{4} \).

Therefore the measure of the line segments completely contained in the square \(ACEF \) is given by:

\[
\mu(N_2) = 4 \int_{\arccos(a/l)}^{\pi/4} (a - l \cos \phi) (a - l \sin \phi) \, d\phi = 4a\sqrt{l^2 - a^2 - l^2 + (\pi - 2)a^2 - 4a^2 \arccos(a/l)}.
\]

If \(l > a\sqrt{2} \) the line segment \(K \) always intersects a side of the square.

iii) Finally we calculate the measure \(N_3 \) of all line segments of length \(l \) contained in the hexagon \(ABCDEF \). Let \(l < a \) be. If \(\phi \in [0, \pi/6] \), we obtain that \(K \) is contained in the hexagon \(ABCDEF \) if its centroid is in the hexagon \(A'B'C'D'E'F' \) whose sides have length \(\overline{A'B'} = a - \frac{2l}{\sqrt{3}} \sin \left(\frac{\pi}{3} - \phi \right) \), \(\overline{B'C'} = a - \frac{2l}{\sqrt{3}} \sin \phi \), and \(\overline{C'D'} = a \) (see figure 5a).

\[\mu(N_2) = \text{hexagon} \quad \text{(a) } \quad \mu(N_2) = \text{parallelogram} \quad \text{(b) } \]

Figure 5. The case \(K = \text{line segment, } K \) in the hexagon

Then
area($A'B'C'D'E'F'$)

\[\frac{3}{2} a^2 \sqrt{3} - l \left[2a \sin \left(\frac{\pi}{3} + \phi \right) - \frac{2}{3} l \sqrt{3} \sin \phi \cos \left(\frac{\pi}{6} + \phi \right) \right],\]

and so we have

\[\mu(N_3) = 6 \int_0^{\pi/6} \text{area}(A'B'C'D'E'F')d\phi = -6al + \frac{3}{2} l^2 + \frac{3}{2} \sqrt{3} a^2 \pi - \frac{1}{6} \sqrt{3} l^2 \pi.\]

Let now $a \geq l < a\sqrt{3}$. The segment K does not intersect the sides of the hexagon if its centroid is in the hexagon $A'B'C'D'E'F'$ when the angle ϕ satisfies

\[\frac{\pi}{3} - \arcsin \left(\frac{a\sqrt{3}}{2l} \right) \leq \phi < \frac{\pi}{6}\]

and if its centroid is in the parallelogram $A'C'D'F'$ when the angle ϕ is in $\left[0, \frac{\pi}{3} - \arcsin \left(\frac{a\sqrt{3}}{2l} \right)\right]$ (see Figure 5a and Figure 5b).

The area of the hexagon $A'B'C'D'E'F'$ is the same as above; since the sides of the parallelogram $A'C'D'F'$ have lengths $C'D' = 2a - \frac{2l \sin \left(\frac{\pi}{3} - \phi \right)}{\sqrt{3}}$ and $A'C' = 2a - \frac{2l \left[\sin \left(\frac{\pi}{3} - \phi \right) + \sin \phi \right]}{\sqrt{3}}$ and the angle of the parallelogram is $\frac{\pi}{3}$ we obtain

\[\text{area}(A'C'D'F') = 2a^2 \sqrt{3} - 2 \sqrt{3} al \cos \phi + \frac{1}{2} \sqrt{3} l^2 \cos^2 \phi - \frac{1}{6} \sqrt{3} l^2 \sin^2 \phi.\]

The measure of the line segments completely contained in the hexagon $ABCDEF$ is given by:

\[\mu(N_3) = 6 \int_0^{\frac{\pi}{3} - \arcsin \left(\frac{a\sqrt{3}}{2l} \right)} \text{area}(A'C'D'F')d\phi + \int_{\frac{\pi}{3} - \arcsin \left(\frac{a\sqrt{3}}{2l} \right)}^{\pi/6} \text{area}(A'B'C'D'E'F')d\phi\]

\[= \frac{\sqrt{3} \pi}{2} \left(l^2 + 5a^2 \right) - \frac{9}{2} a \sqrt{4l^2 - 3a^2} - \sqrt{3} \left(3a^2 + 2l^2 \right) \arcsin \left(\frac{a\sqrt{3}}{2l} \right).\]

Finally if $a\sqrt{3} \leq l < 2a$ the segment K does not intersect the hexagon if and only if its centroid is in the parallelogram $A'C'D'F'$ and the angle ϕ
satisfies \(0 \leq \phi \leq \arcsin \left(\frac{a\sqrt{3}}{l} \right) - \frac{\pi}{3}\). Since the area of the parallelogram is the same as above we have:

\[
\mu(N_3) = 6 \left[\int_0^{\arcsin \left(\frac{a\sqrt{3}}{l} \right) - \frac{\pi}{3}} \text{area}(A'C'D'F')d\phi \right] = \\
= \sqrt{3} \left(l^2 + 12a^2 \right) \arcsin \left(\frac{a\sqrt{3}}{l} \right) + 15a\sqrt{l^2 - 3a^2} - a^2 \left(4\sqrt{3}\pi + 9 \right) \\
- \frac{l^2}{6} \left(9 + 2\sqrt{3}\pi \right).
\]

If \(l \geq 2a\) the line segment \(K\) always meets at least one side of the hexagon.

Since \(p(K, R) = 1 - \frac{2\mu(N_1) + 3\mu(N_2) + \mu(N_3)}{\mathcal{M}}\) we obtain \(3.1\). \(\square\)

This is the probability distribution of \(p_{K,R}\)

\[
\frac{6 - \sqrt{3} \pi + 2\sqrt{7}}{2(3 + 2\sqrt{3})\pi} \approx 0.9949 \\
\frac{4\pi \sqrt{7} + 81\pi}{6(3 + 2\sqrt{3})\pi} \approx 0.9511 \\
\frac{96 - 12\sqrt{3} \pi - 3\pi}{8(3 + 2\sqrt{3})\pi} \approx 0.7684
\]

Let us observe that \(p_{K,R} \leq \frac{1}{2}\) for \(l \geq \frac{60\sqrt{3} - \sqrt{10800 - 630\sqrt{3}\pi - 294\pi^2}}{30\sqrt{3} + 14\pi} \approx 0.3863a\) i.e. also for “small” needles.

\textbf{References}

DIPARTIMENTO DI MATEMATICA PER LE SCIENZE ECONOMICHE, FINANZIARIE ED ATTUARIALI
UNIVERSITÀ CATTOLICA DEL S. CUORE,
LARGO GEMELLI 1, MILAN,
ITALY.
Email address: salvatore.vassallo@unicatt.it