SOME PROPERTIES OF COMBINATION OF SOLUTIONS TO SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH ANALYTIC COEFFICIENTS OF
[P, Q]-ORDER IN THE UNIT DISC

BENHARRAT BELAÏDI \(^1\) AND ZINELÂABIDINE LATREUCH

ABSTRACT. In this paper, we consider some properties on the growth and oscillation of combination of solutions of the linear differential equation

\[f'' + A(z) f' + B(z) f = 0, \]

with analytic coefficients \(A(z) \) and \(B(z) \) with \([p, q]-\)order in the unit disc \(\Delta = \{ z \in \mathbb{C} : |z| < 1 \} \).

1. INTRODUCTION AND PRELIMINARIES

In the year 2000, Heittokangas firstly investigated the growth and oscillation theory of complex differential equation

\[f^{(k)} + A_{k-1}(z)f^{(k-1)} + \cdots + A_0(z)f = 0, \]

where \(A_0(z), \ldots, A_{k-1}(z) \) are analytic functions in the unit disc (see, [15]). It is well-known that all solutions of (1.1) are analytic functions (see, [15]). After him many authors (see, [4], [5], [8], [9], [10], [11], [12], [13], [16], [22]) have investigated the complex differential equation (1.1) and the second-order differential equations

\[f'' + A(z)f' + B(z)f = 0, \]

\[f'' + A(z)f = 0, \]

with analytic and meromorphic coefficients in the unit disc \(\Delta \). In ([17], [18]), Juneja and his co-authors investigated some properties of entire functions of \([p, q]-\)order, and obtained some results concerning their growth. Later, Liu, Tu and Shi; Xu, Tu and Xuan; Li and Cao; Belaïdi; Latreuch and Belaïdi applied the concept of entire (meromorphic) functions in the complex plane and analytic functions in the unit disc \(\Delta = \{ z \in \mathbb{C} : |z| < 1 \} \) of \([p, q]-\)order to investigate the complex differential equation (1.1) (see [6], [7], [22], [23], [24], [26]). In this paper, we will use this concept to study the growth and the oscillation of the combination of two linearly independent solutions \(f_1 \) and \(f_2 \) of equation (1.2) in the unit disc.

In this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna’s theory on the complex plane and in the unit disc \(\Delta = \{ z \in \mathbb{C} : |z| < 1 \} \), see ([14], [15], [19], [20], [25]).

In the following, we will give similar definitions as in ([17], [18]) for analytic and meromorphic functions of \([p, q]-\)order, \([p, q]-\)type and \([p, q]-\)exponent of convergence of the zero-sequence in the unit disc.

Definition 1.1. ([6], [22]) Let \(p \geq q \geq 1 \) be integers, and let \(f \) be a meromorphic function in \(\Delta \), the \([p, q]-\)order of \(f(z) \) is defined by

\[\rho_{p,q}(f) = \limsup_{r \to 1^-} \frac{\log^+ T(r, f)}{\log \frac{1}{1-r}}, \]

where \(T(r, f) \) is the Nevanlinna characteristic function of \(f \). For an analytic function \(f \) in \(\Delta \), we also define

\[\rho_{M,[p,q]}(f) = \limsup_{r \to 1^-} \frac{\log^+ M(r, f)}{\log \frac{1}{1-r}}, \]

where \(M(r, f) = \max \{|f(z)| : |z| = r \} \).

Remark 1.1. It is easy to see that \(0 \leq \rho_{[p,q]}(f) \leq +\infty \) (\(0 \leq \rho_{M,[p,q]}(f) \leq +\infty \)), for any \(p \geq q \geq 1 \). By Definition 1.1, we have that \(\rho_{[1,1]} = \)

\(^{1}\)corresponding author.

2010 Mathematics Subject Classification. 34M10, 30D35.

Key words and phrases. Analytic functions, linear differential equations, \([p, q]-\)order, \([p, q]-\)exponent of convergence of the sequence of distinct zeros, unit disc.
\[\rho(f) (\rho_M^{[1,1]} = \rho_M(f)) \text{ and } \rho_{[2,1]} = \rho_2(f) \]
\[(\rho_M^{[2,1]} = \rho_M(f)). \]

For the relationship between \(\rho_{[p,q]}(f) \) and \(\rho_{M^{[p,q]}(f)} \) we have the following double inequality.

Proposition 1.1. ([6]) Let \(p \geq q \geq 1 \) be integers, and let \(f \) be an analytic function in \(\Delta \) of \([p,q]\)-order.

(i) If \(p = q \geq 1 \), then
\[\rho_{[p,q]}(f) \leq \rho_{M^{[p,q]}(f)} \leq \rho_{[p,q]}(f) + 1. \]

(ii) If \(p > q \geq 1 \), then
\[\rho_{[p,q]}(f) = \rho_{M^{[p,q]}(f)}. \]

Definition 1.2. ([22]) Let \(p \geq q \geq 1 \) be integers. The \([p,q]\)-type of a meromorphic function \(f(z) \) in \(\Delta \) of \([p,q]\)-order \(\rho \) (\(0 < \rho < +\infty \)) is defined by
\[\tau_{[p,q]}(f) = \limsup_{r \to 1^-} \frac{\log_{p-1} T(r,f)}{(\log \frac{1}{1-r})^p}. \]

Definition 1.3. ([22]) Let \(p \geq q \geq 1 \) be integers. The \([p,q]\)-exponent of convergence of the zero-sequence of \(f(z) \) in \(\Delta \) is defined by
\[\lambda_{[p,q]}(f) = \limsup_{r \to 1^-} \frac{\log_{q} N(r,\frac{1}{r})}{(\log \frac{1}{1-r})^q}, \]
where \(N(r,\frac{1}{r}) \) is the integrated counting function of zeros of \(f(z) \) in \(\{z : |z| \leq r\} \). Similarly, the \([p,q]\)-exponent of convergence of the sequence of distinct zeros of \(f(z) \) in \(\Delta \) is defined by
\[\lambda_{[p,q]}(f) = \limsup_{r \to 1^-} \frac{\log_{q} N(r,\frac{1}{r})}{(\log \frac{1}{1-r})^q}, \]
where \(N(r,\frac{1}{r}) \) is the integrated counting function of distinct zeros of \(f(z) \) in \(\{z : |z| \leq r\} \).

The study of the properties of linearly independent solutions of complex differential equations is an old problem. In ([2], [3]), Bank and Laine obtained some results about the product \(E = f_1f_2 \) of two linearly independent solutions \(f_1 \) and \(f_2 \) of (1.3) in the complex plane. In [21], the authors have investigated the relations between the polynomial of solutions of (1.2) and small functions in the complex plane. They showed that \(w = d_1f_1 + d_2f_2 \) keeps the same properties of growth and oscillation of \(f_j (j = 1, 2) \), where \(f_1 \) and \(f_2 \) are two linearly independent solutions of (1.2) and obtained the following results.

Theorem 1.1. ([21]) Let \(A(z) \) and \(B(z) \) be entire functions of finite order such that \(\rho(A) < \rho(B) \) and \(\tau(A) < \tau(B) < +\infty \) if \(\rho(B) = \rho(A) > 0 \). Let \(d_j(z) (j = 1, 2) \) be entire functions that are not all vanishing identically such that
\[\max\{\rho(d_1), \rho(d_2)\} < \rho(B). \]
If \(f_1 \) and \(f_2 \) are two nontrivial linearly independent solutions of (1.2), then the polynomial of solutions \(w = d_1f_1 + d_2f_2 \) satisfies
\[\rho(w) = \rho(f_1) = \rho(f_2) = +\infty \]
and
\[\rho_2(w) = \rho(B). \]

In the same paper, the authors studied also the zeros of the difference between the polynomial of solutions \(w = d_1f_1 + d_2f_2 \) and entire functions of finite order.

The remainder of the paper is organized as follows. Section 2, we shall show our main results which improve and extend many results in the abovementioned papers. Section 3 is for some lemmas and basic theorems. The other sections are for the proofs of our main results.

2. MAIN RESULTS

A natural question arises: What can be said about similar situations in the unit disc \(\Delta \) for equation (1.2) in the terms of \([p,q]\)-order? Before we state our results, we define \(h \) and \(\psi(z) \) by

\[h = \begin{vmatrix} H_1 & H_2 & H_3 & H_4 \\ H_5 & H_6 & H_7 & H_8 \\ H_9 & H_{10} & H_{11} & H_{12} \\ H_{13} & H_{14} & H_{15} & H_{16} \end{vmatrix}, \]

where
\[H_1 = d_1, \quad H_2 = 0, \quad H_3 = d_2, \quad H_4 = 0, \quad H_5 = d'_1 - d_1B, \]
\[H_6 = 2d'_1 - d_1A, \quad H_7 = d'_2 - d_2B, \]
\[H_8 = 2d'_2 - d_2A, \quad H_9 = d'_1 - 3d_1B + d_1AB - d_1B', \]
\[H_{10} = 3d'_1 - 2d_1A - d_1B + d_1A^2 - d_1A', \]
\[H_{11} = d'_2 - 3d_2B + d_2AB - d_2B', \]
\[H_{12} = 3d'_2 - 2d_2A - d_2B + d_2A^2 - d_2A', \]
and
\[\psi(z) = 2 \frac{d_1d_2d'_1 - d_2d'_1}{h} \phi^3 + \phi_1 \phi' + \phi_0, \]
where \(\phi \neq 0, \phi_1 (j = 1, 2) \) are analytic functions of finite \([p,q]\)-order in \(\Delta \) and

2.1 \[\phi_2 = \frac{2 (d_1d_2d'_1 - d_2d'_1) A - 3d_1d_2d'_1 + 3d_2d'_1}{h}, \]
\[\phi_1 = \frac{6d_2 (d_1d'_2 - d'_2) + 2d_2 (d_1d'_2 - d'_2) B}{h}, \]
\[+ \frac{2d_2 (d_1d'_2 - d'_2) A + 3d_2 (d_1d'_2 - d'_2) A}{h}. \]
\[\phi_0 = \frac{1}{b} \left[(d_1 d_2' d_2'' - 3 d_2 d_2' d_2'' + 2 d_2 d_2' d_2'') A + (4 d_1 d_2' d_2'' + 3 d_2' d_2'' - 3 d_1 d_2 d_2'' - 4 d_2 d_2' d_2'') B + 2 (d_2' d_2' - d_1 d_2'') A' + 2 (d_1 d_2'' - d_2' d_2''') B' + 6 (d_2')^2 d_2'' \right] - 2 d_2 d_2'' d_2'' + 2 d_2 d_2' d_2' \]

(2.3) \[-3 d_2 d_2' d_2'' - 6 d_1 d_2' d_2'' + 3 d_1 (d_2')^2].\]

Theorem 2.1. Let \(p \geq q \geq 1 \) be integers, and let \(A(z) \) and \(B(z) \) be analytic functions in \(\Delta \) of finite \([p, q]\)-order such that \(\rho_{[p,q]}(A) < \rho_{[p,q]}(B) \) and \(0 < \tau_{[p,q]}(A) < \tau_{[p,q]}(B) < \infty \) if \(\rho_{[p,q]}(B) = \rho_{[p,q]}(A) > 0 \). Let \(d_j(z) \) \((j = 1, 2)\) be analytic functions that are not all vanishing identically such that \(\max \{ \rho_{[p,q]}(d_1), \rho_{[p,q]}(d_2) \} < \rho_{[p,q]}(B) \). If \(f_1 \) and \(f_2 \) are two nontrivial linearly independent solutions of (1.2), then the polynomial of solutions

\[w = d_1 f_1 + d_2 f_2 \]

satisfies

\[\rho_{[p,q]}(w) = \rho_{[p,q]}(f_1) = \rho_{[p,q]}(f_2) = +\infty \]

and

\[\rho_{[p,q]}(B) \leq \rho_{[p+1,q]}(w) \leq \alpha_M, \]

where \(\alpha_M = \max \{ \rho_M, \rho_{[p,q]}(B) \} \). Furthermore, if \(p > q \geq 1 \), then

\[\rho_{[p+1,q]}(w) = \rho_{[p,q]}(B). \]

Example 2.1. ([10]) For \(\beta > 0 \), the functions \(f_1(z) = \exp(\exp((1 - z)^{-\beta})) \) and \(f_2(z) = \exp((1 - z)^{-\beta}) \exp(\exp((1 - z)^{-\beta})) \) are linearly independent solutions of (1.2) satisfying

\[\rho_{[1,1]}(f_1) = \rho_{[1,1]}(f_2) = +\infty \]

and

\[\rho_{[2,1]}(f_1) = \rho_{[2,1]}(f_2) = \beta, \]

where

\[A(z) = \frac{2 \beta \exp((1 - z)^{-\beta})}{(1 - z)^{p+1}} - \frac{\beta}{(1 - z)^{p+1}} - \frac{1 + \beta}{1 - z} \]

and

\[B(z) = \frac{\beta^2 \exp((2(1 - z)^{-\beta})}{(1 - z)^{p+2}}. \]

It is clear that \(\rho_{[1,1]}(A) = \rho_{[1,1]}(B) \) and \(\tau_{[1,1]}(A) < \tau_{[1,1]}(B) \). Then, by Theorem 2.1 for any two and analytic functions \(d_i(z) \) \((i = 1, 2)\) of finite order \(\rho_{[1,1]}(d_i) < +\infty (i = 1, 2) \) that are not all vanishing identically such that \(\max \{ \rho_{[1,1]}(d_1), \rho_{[1,1]}(d_2) \} < \rho_{[1,1]}(B) \), the combination \(w = d_1 f_1 + d_2 f_2 \) is of infinite order \(\rho_{[1,1]}(w) = +\infty \) and \(\rho_{[2,1]}(w) = \beta \).

From Theorem 2.1, we can obtain the following result.

Corollary 2.1. Let \(p \geq q \geq 1 \) be integers, and let \(f_i(z) \) \((i = 1, 2)\) be two nontrivial linearly independent solutions of (1.2), where \(A(z) \) and \(B(z) \) are analytic functions of finite \([p, q]\)-order in \(\Delta \) such that \(\rho_{[p,q]}(A) < \rho_{[p,q]}(B) \) or \(\rho_{[p,q]}(A) = \rho_{[p,q]}(B) > 0 \) and \(0 < \tau_{[p,q]}(A) < \tau_{[p,q]}(B) < +\infty \), and let \(d_j(z) \) \((j = 1, 2, 3)\) be analytic functions in \(\Delta \) satisfying

\[\max \{ \rho_{[p,q]}(d_j) : j = 1, 2, 3 \} < \rho_{[p,q]}(B) \]

and

\[d_3(z) f_3 + d_1(z) f_1 = d_2(z). \]

Then \(d_j(z) \equiv 0 \) \((j = 1, 2, 3)\).

Theorem 2.2. Under the hypotheses of Theorem 2.1, let \(\varphi(z) \equiv 0 \) be an analytic function in \(\Delta \) with finite \([p, q]\)-order such that \(\varphi(z) \equiv 0 \). If \(f_1 \) and \(f_2 \) are two nontrivial linearly independent solutions of (1.2), then the polynomial of solutions \(w = d_1 f_1 + d_2 f_2 \) satisfies

\[\lambda_{[p+1,q]}(w - \varphi) = \lambda_{[p,q]}(w - \varphi) = \rho_{[p,q]}(w) = +\infty \]

and

\[\rho_{[p,q]}(B) \leq \lambda_{[p+1,q]}(w - \varphi) = \]

\[\lambda_{[p+1,q]}(w - \varphi) = \rho_{[p+1,q]}(w) \leq \alpha_M. \]

Furthermore, if \(p > q \geq 1 \), then

\[\lambda_{[p+1,q]}(w - \varphi) = \rho_{[p+1,q]}(w - \varphi) = \]

\[\lambda_{[p+1,q]}(w - \varphi) = \rho_{[p+1,q]}(w) \leq \alpha_M. \]

Theorem 2.3. Let \(p \geq q \geq 1 \) be integers, and let \(A(z) \) and \(B(z) \) be analytic functions in \(\Delta \) of finite \([p, q]\)-order such that \(\rho_{[p,q]}(A) < \rho_{[p,q]}(B) \). Let \(d_j(z) \) \((j = 1, 2)\) be finite \([p, q]\)-order analytic functions in \(\Delta \) such that \(d_1(z) b_2(z) - d_2(z) b_1(z) \neq 0 \). If \(f_1 \) and \(f_2 \) are two nontrivial linearly independent solutions of (1.2), then

\[\rho_{[p,q]} \left(\frac{d_1 f_1 + d_2 f_2}{b_1 f_1 + b_2 f_2} \right) = +\infty \]

and

\[\rho_{[p,q]}(B) \leq \rho_{[p+1,q]} \left(\frac{d_1 f_1 + d_2 f_2}{b_1 f_1 + b_2 f_2} \right) \leq \alpha_M. \]

Furthermore, if \(p > q \geq 1 \), then

\[\rho_{[p+1,q]} \left(\frac{d_1 f_1 + d_2 f_2}{b_1 f_1 + b_2 f_2} \right) = \rho_{[p,q]}(B). \]
3. Auxiliary Lemmas

Lemma 3.1. ([14], [15], [25]) Let \(f \) be a meromorphic function in the unit disc and let \(k \in \mathbb{N} \). Then

\[
m \left(r, \frac{f^{(k)}}{f} \right) = S(r, f),
\]

where \(S(r, f) = O \left(\log^+ T(r, f) + \log \left(\frac{1}{1-r} \right) \right) \), possibly outside a set \(E_1 \subseteq [0,1) \) with \(\int_{E_1} \frac{dr}{1-r} < +\infty \).

Lemma 3.2. ([1], [25]) Let \(g : (0,1) \rightarrow \mathbb{R} \) and \(h : (0,1) \rightarrow \mathbb{R} \) be monotone increasing functions such that \(g(r) \leq h(r) \) holds outside of an exceptional set \(E_2 \subseteq (0,1) \) for which \(\int_{E_2} \frac{dr}{1-r} < +\infty \). Then there exists a constant \(d \in (0,1) \) such that if \(s(r) = 1 - d(1-r) \), then \(g(r) \leq h(s(r)) \) for all \(r \in [0,1) \).

Lemma 3.3. ([6]) Let \(p \geq q \geq 1 \) be integers. If \(A_0(z), \ldots, A_{k-1}(z) \) are analytic functions of \([p, q]-order\) in the unit disc \(\Delta \), then every solution \(f \neq 0 \) of (1.1) satisfies

\[
\rho_{p+1,q}(f) = \rho_{M,[p,q]}(f) \\
\leq \max \{ \rho_{M,[p,q]}(A_j) : j = 0, 1, \ldots, k - 1 \}.
\]

Lemma 3.4. ([22]) Let \(p \geq q \geq 1 \) be integers. Let \(A_j(z) (j = 0, \ldots, k - 1) \), \(F \neq 0 \) be analytic functions in \(\Delta \), and let \(f(z) \) be a solution of the differential equation

\[
f^{(k)} + A_{k-1}(z) f^{(k-1)} + \cdots + A_1(z) f' + A_0(z) f = F
\]

satisfying

\[
\max \{ \rho_{p,q}(A_j) : j = 0, \ldots, k - 1 \}, \rho_{p,q}(F)
\]

\[
< \rho_{p,q}(f) \leq \rho \leq +\infty.
\]

Then we have

\[
\lambda_{p,q}(f) = \lambda_{[p,q]}(f) = \rho_{p,q}(f)
\]

and

\[
\lambda_{p+1,q}(f) = \lambda_{[p+1,q]}(f) = \rho_{p+1,q}(f).
\]

Lemma 3.5. ([22]) Let \(p \geq q \geq 1 \) be integers, and let \(f \) and \(g \) be non-constant meromorphic functions of \([p, q]-order\) in \(\Delta \). Then we have

\[
\rho_{p,q}(f + g) \leq \max \{ \rho_{p,q}(f), \rho_{p,q}(g) \}
\]

and

\[
\rho_{p,q}(fg) \leq \max \{ \rho_{p,q}(f), \rho_{p,q}(g) \}.
\]

Furthermore, if \(\rho_{p,q}(f) > \rho_{p,q}(g) \), then we obtain

\[
\rho_{p,q}(f + g) = \rho_{p,q}(fg) = \rho_{p,q}(f).
\]

Lemma 3.6. ([22]) Let \(p \geq q \geq 1 \) be integers, and let \(f \) and \(g \) be meromorphic functions of \([p, q]-order\) in \(\Delta \) such that \(0 < \rho_{p,q}(f), \rho_{p,q}(g) < +\infty \) and \(0 < \tau_{p,q}(f), \tau_{p,q}(g) < +\infty \). Then, we have

i) If \(\rho_{p,q}(f) > \rho_{p,q}(g) \), then

\[
\tau_{p,q}(f + g) = \tau_{p,q}(fg) = \tau_{p,q}(f).
\]

ii) If \(\rho_{p,q}(f) = \rho_{p,q}(g) \) and \(\tau_{p,q}(f) \neq \tau_{p,q}(g) \), then

\[
\rho_{p,q}(f + g) = \rho_{p,q}(fg) = \rho_{p,q}(f) = \rho_{p,q}(g).
\]

Lemma 3.7. ([22]) Let \(p \geq q \geq 1 \) be integers, and let \(A_j(z) (j = 0, \cdots, k - 1) \) be analytic functions in \(\Delta \) satisfying

\[
\max \{ \rho_{p,q}(A_j) : j = 0, \cdots, k - 1 \} < \rho_{p,q}(A_0).
\]

If \(f \neq 0 \) is a solution of (1.1), then \(\rho_{p,q}(f) = +\infty \) and

\[
\rho_{p,q}(A_0) \leq \rho_{p+1,q}(f) \leq \max \{ \rho_{M,[p,q]}(A_j) : j = 0, \cdots, k - 1 \}.
\]

Furthermore, if \(p > q \geq 1 \), then

\[
\rho_{p+1,q}(f) = \rho_{p,q}(A_0).
\]

Lemma 3.8. Let \(p \geq q \geq 1 \) be integers, and let \(A(z) \) and \(B(z) \) be analytic functions in \(\Delta \) of finite \([p, q]-order\) such that \(\rho_{p,q}(A) < \rho_{p,q}(B) \). If \(f_1 \) and \(f_2 \) are two non-trivial linearly independent solutions of (1.2), then \(f_1 / f_2 \) is of infinite \([p, q]-order\) and

\[
\rho_{p,q}(B) \leq \rho_{p+1,q}(\frac{f_1}{f_2}) \leq \alpha_M.
\]

Furthermore, if \(p > q \geq 1 \), then

\[
\rho_{p+1,q}(f_1) = \rho_{p+1,q}(f_2) \leq \alpha M.
\]

Proof. Suppose that \(f_1 \) and \(f_2 \) are two non-trivial linearly independent solutions of (1.2). Since \(\rho_{p,q}(B) > \rho_{p,q}(A) \), then by Lemma 3.7

\[
\rho_{p,q}(f_1) = \rho_{p,q}(f_2) = +\infty, \rho_{p,q}(B) \leq
\]

\[
(3.1) \quad \rho_{p+1,q}(f_1) = \rho_{p+1,q}(f_2) \leq \alpha M.
\]

Furthermore, if \(p > q \geq 1 \), then

\[
\rho_{p+1,q}(f_1) = \rho_{p+1,q}(f_2) = \rho_{p,q}(B).
\]

On the other hand

\[
(3.2) \quad \left(\frac{f_1}{f_2} \right)' = -\frac{W(f_1, f_2)}{f_2},
\]

where \(W(f_1, f_2) = f_1 f_2' - f_2 f_1' \) is the Wronskian of \(f_1 \) and \(f_2 \). By using (1.2) we obtain that

\[
W'(f_1, f_2) = -A(z) W(f_1, f_2),
\]

which implies that

\[
(3.3) \quad W(f_1, f_2) = K \exp(-\int A(z)dz),
\]
where \(\int A(z)dz \) is the primitive of \(A(z) \) and \(K \in \mathbb{C} \setminus \{0\} \). By (3.2) and (3.3) we have

\[
(3.4) \quad \left(\frac{f_1}{f_2} \right)' = -K \exp(-\int A(z)dz).
\]

Since \(\rho_{p,q}(f_2) = +\infty \), \(\rho_{p+1,q}(f_2) \geq \rho_{p,q}(B) > \rho_{p,q}(A) \) if \(p \geq q \geq 1 \) and \(\rho_{p+1,q}(f_2) = \rho_{p,q}(B) > \rho_{p,q}(A) \) if \(p \geq q \geq 1 \), then by using (3.1) and Lemma 3.5 we obtain from (3.4)

\[
\rho_{p,q}(f_2) = \rho_{p,q}(f_2) = +\infty,
\]

\[
\rho_{p,q}(B) \leq \rho_{p+1,q}(f_2) = \rho_{p+1,q}(f_2) \leq \alpha_M
\]

if \(p \geq q \geq 1 \) and

\[
\rho_{p+1,q}(f_2) = \rho_{p+1,q}(f_2) = \rho_{p,q}(B)
\]

if \(p > q \geq 1 \). \(\square \)

Lemma 3.9. ([6]) Let \(p \geq q \geq 1 \) be integers. Let \(f \) be a meromorphic function in the unit disc \(\Delta \) such that \(\rho_{p,q}(f) = \rho < +\infty \), and let \(k \geq 1 \) be an integer. For each \(\epsilon > 0 \),

\[
m \left(r, \frac{f^{(k)}}{f} \right) = O \left(\exp_{p-1} \left((\rho + \epsilon) \log_\frac{1}{1-r} \right) \right)
\]

holds for all \(r \) outside a set \(E_\epsilon \subset [0,1) \) with \(\int_{E_\epsilon} \frac{dv}{1-r} < +\infty \).

Lemma 3.10. Let \(p \geq q \geq 1 \) be integers, and let \(f \) be a meromorphic function in \(\Delta \) with \([p, q] \) -order \(0 < \rho_{p,q}(f) = \rho < +\infty \) and \([p, q] \) -type \(0 < \tau_{p,q}(f) = \tau < +\infty \). Then for any given \(\beta < \tau \), there exists a subset \(E_\beta \) of \([0,1] \) that has an infinite logarithmic measure \(\int_{E_\beta} \frac{dv}{1-r} = +\infty \) such that

\[
\log_{p-1} T(r, f) > \beta \left[\log_{q-1} \left(\frac{1-r}{1-r_m} \right) \right]^\rho
\]

holds for all \(r \in E_\beta \).

Proof. By the definitions of \([p, q]\) -order and \([p, q]\) -type, there exists an increasing sequence \(\{r_m\}_{m=1}^{\infty} \subset [0,1) \) \(r_m \to 1^- \) satisfying \(\frac{1}{r_m} + \frac{1}{1-r_m} r_m < \rho_{m+1} \) and

\[
\lim_{m \to +\infty} \frac{\log_{p-1} T(r_m, f)}{\log_{q-1} \left(\frac{1-r}{1-r_m} \right)} = \tau.
\]

Then there exists a positive integer \(m_0 \) such that for all \(m \geq m_0 \) and for any given \(0 < \epsilon < \tau - \beta \), we have

\[
(3.5) \quad \log_{p-1} T(r_m, f) > (\tau - \epsilon) \left(\frac{1}{1-r_m} \right) \beta
\]

For any given \(\beta < \tau - \epsilon \), there exists a positive integer \(m_1 \) such that for all \(m \geq m_1 \), we have

\[
(3.6) \quad \left[\frac{\log_{q-1} \left(\frac{1-r}{1-r_m} \right)}{\log_{q-1} \left(\frac{1-r}{1-r_m} \right)} \right]^{\beta} > \frac{\beta}{\tau - \epsilon}.
\]

Take \(m \geq m_2 = \max\{m_0, m_1\} \). By (3.5) and (3.6), for any \(r \in [r_m, \frac{1}{m} + (1 - \frac{1}{m}) r_m] \), we have

\[
\log_{p-1} T(r, f) \geq \log_{p-1} T(r_m, f)
\]

\[
> (\tau - \epsilon) \left(\frac{1}{1-r_m} \right) \beta
\]

\[
> (\tau - \epsilon) \left(\frac{1}{1-r_m} \right) \beta
\]

\[
> \beta \left(\frac{1}{1-r_m} \right)^\rho.
\]

Set \(E_4 = \frac{1}{m} + (1 - \frac{1}{m}) r_m \), then there holds

\[
m E_4 = \sum_{m=m_2}^{+\infty} \frac{dt}{1-t} = \sum_{m=m_2}^{+\infty} \frac{\log \frac{m}{m-1}}{m-m-1} = +\infty.
\]

Lemma 3.11. Let \(p \geq q \geq 1 \) be integers, and let \(A(z) \) and \(B(z) \) be analytic functions in \(\Delta \) of finite \([p, q] \) -order such that \(\rho_{p,q}(A) < \rho_{p,q}(B) \) and \(\tau_{p,q}(A) < \tau_{p,q}(B) \) < \(+\infty \) if \(\rho_{p,q}(B) = \rho_{p,q}(A) > 0 \). If \(f \neq 0 \) is a solution of (1.2), then

\[
\rho_{p,q}(f) = +\infty, \quad \rho_{p,q}(B) = \rho_{p,q}(A) < \rho_{p+1,q}(f) \leq \alpha_M
\]

and

\[
\rho_{p+1,q}(f) = \rho_{p,q}(B)
\]

if \(p > q \geq 1 \).

Proof. If \(\rho_{p,q}(B) > \rho_{p,q}(A) \), then the result can be deduced by Lemma 3.7. We prove only the case when \(\rho_{p,q}(B) = \rho_{p,q}(A) = \rho \) and \(\tau_{p,q}(B) > \tau_{p,q}(A) > 0 \). Since \(f \neq 0 \), then by (1.2)

\[
B = -\left(\begin{pmatrix} f & f \end{pmatrix} + A f \right).
\]

Suppose that \(f \) is of finite \([p, q]\) -order \(\rho_{p,q}(f) = \mu < +\infty \). Then by Lemma 3.9

\[
T(r, B) \leq T(r, A) + O \left(\exp_{p-1} \left((\mu + \epsilon) \log_\frac{1}{1-r} \right) \right)
\]

holds for all \(r \) outside a set \(E_\epsilon \subset [0,1] \) with \(\int_{E_\epsilon} \frac{dv}{1-r} < +\infty \), which implies by using Lemma 3.2 the contradiction

\[
\tau_{p,q}(B) \leq \tau_{p,q}(A).
\]

Hence \(\rho_{p,q}(f) = +\infty \). By Lemma 3.3, we have

\[
\rho_{p+1,q}(f) = \rho_{p+1,q}(f) \leq \max \{\rho_{p+1,q}(A), \rho_{p+1,q}(B)\}
\]

On the other hand, since \(\rho_{p,q}(f) = +\infty \), then by Lemma 3.1

\[
(3.7) \quad T(r, B) \leq T(r, A) + O \left(\log^+ T(r, f) + \log \left(\frac{1}{1-r} \right) \right)
\]
holds for all \(r \) outside a set \(E_1 \subset [0,1) \) with

\[
\int_{E_1} \frac{dr}{1-r} < +\infty.
\]

By Lemma 3.10, there exists a subset \(E_2 \subset [0,1) \) of

\[
\exp_p - 1 \left\{ \alpha_0 \left(\log_{q-1} \left(\frac{1}{1-r} \right) \right)^p \right\} \geq \exp_p - 1 \left\{ \alpha_1 \left(\log_{q-1} \left(\frac{1}{1-r} \right) \right)^p \right\}
\]

By (3.7)-(3.9) we obtain for all \(r \in E_2 \setminus E_1 \)

\[
\exp_p - 1 \left\{ \alpha_0 \left(\log_{q-1} \left(\frac{1}{1-r} \right) \right)^p \right\} \leq \exp_p - 1 \left\{ \alpha_1 \left(\log_{q-1} \left(\frac{1}{1-r} \right) \right)^p \right\}
\]

(3.10) +O \left(\log^+ T(r, f) + \log \left(\frac{1}{1-r} \right) \right).

By using (3.10) and Lemma 3.2, we obtain

\[
\rho_{p,q}(B) \leq \rho_{p+1,q}(f).
\]

Hence

\[
\rho_{p,q}(B) \leq \rho_{p+1,q}(f) \leq \max \{ \rho_{M,p,q}(A), \rho_{M,p,q}(B) \}
\]

if \(p \geq q \geq 1 \) and \(\rho_{p+1,q}(f) = \rho_{p,q}(B) \) if \(p > q \geq 1 \).

\[\square\]

4. PROOF OF THEOREM 2.1

Proof. In the case when \(d_1(z) \equiv 0 \) or \(d_2(z) \equiv 0 \), then the conclusions of Theorem 2.1 are trivial. Suppose that \(f_1 \) and \(f_2 \) are two nontrivial linearly independent solutions of (1.2) and \(d_j(z) \equiv 0 \) at 1, 2). Then by Lemma 3.11, we have

\[
\rho_{p,q}(f) = +\infty, \quad \rho_{p,q}(B) \leq \rho_{p+1,q}(f) \leq \alpha_M
\]

if \(p \geq q \geq 1 \) and

\[
\rho_{p+1,q}(f) = \rho_{p,q}(B)
\]

if \(p > q \geq 1 \). Suppose that \(d_1 = cd_2 \), where \(c \) is a complex number. Then, we obtain

\[
w = d_1 f_1 + d_2 f_2 = c f_1 + f_2 = \alpha M.
\]

Since \(f = c f_1 + f_2 \) is a solution of (1.2) and \(\rho_{p,q}(d_2) < \rho_{p,q}(B) \), then we have

\[
\rho_{p,q}(w) = \rho_{p,q}(c f_1 + f_2) = +\infty.
\]

If \(p \geq q \geq 1 \) and

\[
\rho_{p+1,q}(w) = \rho_{p+1,q}(c f_1 + f_2) = \rho_{p,q}(B)
\]

if \(p > q \geq 1 \). Suppose now that \(d_1 \neq cd_2 \) where \(c \) is a complex number. Differentiating both sides of (2.4), we obtain

\[
(4.1) \quad w' = d_1' f_1 + d_1 f_1' + d_2 f_2 + d_2 f_2' + d_2 f_2'.
\]

Differentiating both sides of (4.1), we obtain

\[
(4.2) \quad w'' = d_1'' f_1 + 2 d_1' f_1' + d_1 f_1'' + d_2 f_2' + d_2 f_2' + d_2 f_2'.
\]

Substituting \(f_j'' = -A(z) f_j'' + B(z) f_j (j = 1, 2) \) into equation (4.2), we have

\[
w'' = (d_1'' - d_1' B) f_1 + (2 d_1' - d_1 A) f_1'
\]

(4.3) \(+ \ (d_2'' - d_2' B) f_2 + (2 d_2' - d_2 A) f_2'.
\]

Differentiating both sides of (4.3) and by substituting \(f_j'' = -A(z) f_j'' - B(z) f_j (j = 1, 2) \), we obtain

\[
w''' = (d_1''' - 3 d_1' B + d_1 (AB - B')) f_1
\]

(4.4) \(+ \ (3 d_1'' - 2 d_1' A + d_1 (A^2 - A' - B)) f_1'
\]

By (2.4) and (4.1)-(4.4) we have

\[
\begin{align*}
\begin{cases}
\begin{aligned}
&w = d_1 f_1 + d_2 f_2, \\
w' = d_1 f_1 + d_1 f_1' + d_2 f_2 + d_2 f_2' + d_2 f_2', \\
w'' = (d_1'' - d_1' B) f_1 + (2 d_1' - d_1 A) f_1' + (d_2'' - d_2 B) f_2 + (2 d_2' - d_2 A) f_2', \\
w''' = (d_1''' - 3 d_1' B + d_1 (AB - B')) f_1 + (3 d_1'' - 2 d_1' A + d_1 (A^2 - A' - B)) f_1' + (d_2''' - 3 d_2' B + d_2 (AB - B')) f_2 + (3 d_2'' - 2 d_2 A + d_2 (A^2 - A' - B)) f_2'.
\end{aligned}
\end{cases}
\end{align*}
\]

To solve this system of equations, we need first to prove that \(h \neq 0 \). By simple calculations we obtain

\[
h = \begin{bmatrix} H_1 & H_2 & H_3 & H_4 \\ H_5 & H_6 & H_7 & H_8 \\ H_9 & H_{10} & H_{11} & H_{12} \\ H_{13} & H_{14} & H_{15} & H_{16} \end{bmatrix}
\]

\[= 2 (d_1 d_2 - d_1 d_2')^2 B + (d_2 d_2' d_1' - d_1 d_2 d_1 d_2') A - 2 (d_1 d_2 - d_2 d_1')^2 A' + 2 d_1 d_2 d_1 d_2' + 2 d_1 d_2 d_1' d_2'' - 6 d_1 d_2 d_1' d_2'' + 6 d_1 d_2 d_1' d_2'' + 6 d_2 d_1' d_2' d_1''' - 2 d_2 d_1' d_2'' + 3 d_2 (d_1')^2.\]

It is clear that \((d_1 d_2' - d_2 d_1')^2 \neq 0 \) because \(d_1 \neq cd_2 \). Since

\[
\max \{ \rho_{p,q}(d_1), \rho_{p,q}(d_2) \} < \rho_{p,q}(B)
\]
and \((d_1d_2 - d_2d_1')^2 \neq 0\), then by using Lemma 3.6 we can deduce that \(\rho_{p|q_1}(h) = \rho_{p|q_1}(B) > 0\). Hence \(h \neq 0\). By Cramer’s method we have
\[
 f_1 = \begin{vmatrix} w & H_0 & H_1 & H_2 \\ w' & H_0' & H_1' & H_2' \\ w'' & H_{10} & H_{10} & H_{12} \\ w^{(3)} & H_{14} & H_{15} & H_{16} \end{vmatrix}_{\frac{h}{h}}
\]
(4.5) \[= 2 \left(\frac{d_1d_2d_2' - d_2d_1'd_1''}{h} \right) w^{(3)} + \phi_2w'' + \phi_1w' + \phi_0w, \]
where \(\phi_j\) \((j = 0, 1, 2)\) are meromorphic functions in \(\Delta\) of finite \([p, q]\)-order which are defined in (2.1)-(2.3). By (4.5) and Lemma 3.5, we have \(\rho_{p|q_1}(f_1) \leq \rho_{p|q_1}(w)(\rho_{p+1|q_1}(f_1) \leq \rho_{p+1|q_1}(w))\) and by (2.4) we have \(\rho_{p|q_1}(w) \leq \rho_{p|q_1}(f_1) \leq \rho_{p+1|q_1}(w) \leq \rho_{p+1|q_1}(f_1)\). Thus \(\rho_{p+1|q_1}(w) = \rho_{p|q_1}(f_1)\) and \(\rho_{p+1|q_1}(w) = \rho_{p+1|q_1}(f_1)\).

5. Proof of Corollary 2.1

Proof. We suppose there exists \(j = 1, 2, 3\) such that \(d_j(z) \neq 0\) and we obtain a contradiction. If \(d_1(z) \neq 0\) or \(d_2(z) = 0\), then by Theorem 2.1 we have \(\rho_{p|q_1}(d_1f_1 + d_2f_2) = +\infty = \rho_{p|q_1}(d_2) < \rho_{p|q_1}(B)\) which is a contradiction. Now if \(d_1(z) \equiv 0, d_2(z) \equiv 0\) and \(d_3(z) \neq 0\) we obtain also a contradiction. Hence \(d_j(z) \equiv 0 (j = 1, 2, 3)\).

6. Proof of Theorem 2.2

Proof. By Theorem 2.1, we have
\[
\rho_{p|q_1}(w) = +\infty, \quad \rho_{p|q_1}(B) \leq \rho_{p+1|q_1}(w) \leq \alpha_M
\]
if \(p > q \geq 1\) and
\[
\rho_{p+1|q_1}(w) = \rho_{p|q_1}(B)
\]
if \(p > q \geq 1\). Set \(g(z) = d_1f_1 + d_2f_2 - \varphi\). Since \(\rho_{p|q_1}(\varphi) < +\infty\), then by Lemma 3.5 we have \(\rho_{p|q_1}(g) = \rho_{p|q_1}(w) = +\infty, \rho_{p+1|q_1}(g) = \rho_{p+1|q_1}(w)\). In order to prove \(\lambda_{p|q_1}(w - \varphi) = \lambda_{p|q_1}(w) = \lambda_{p+1|q_1}(w - \varphi) = \lambda_{p+1|q_1}(w)\), we need to prove only \(\lambda_{p|q_1}(g) = \lambda_{p|q_1}(g) = \lambda_{p+1|q_1}(g) = \lambda_{p+1|q_1}(g)\). By \(w = g + \varphi\) we get from (4.5)
\[
(6.1) \quad f_1 = 2 \left(\frac{d_1d_2d_2' - d_2d_1'd_1''}{h} \right) g^{(3)} + \phi_2g'' + \phi_1g' + \phi_0g + \psi,
\]
where
\[
\psi = 2 \left(\frac{d_1d_2d_2' - d_2d_1'd_1''}{h} \right) \phi^{(3)} + \phi_2\phi'' + \phi_1\phi' + \phi_0\phi.
\]
Substituting (6.1) into equation (1.2), we obtain
\[
2 \left(\frac{d_1d_2d_2' - d_2d_1'd_1''}{h} \right) g^{(n)} + \sum_{j=0}^{4} \beta_j g^{(j)}
\]
\[= - (\psi'' + A(z)\psi' + B(z)\psi) = F(z),\]
where \(\beta_j (j = 0, \ldots, 4)\) are meromorphic functions of finite \([p, q]\)-order in \(\Delta\). Since \(\psi \neq 0\) and \(\rho_{p|q_1}(\psi) < +\infty\), it follows that \(\psi\) is not a solution of (1.2), which implies that \(F(z) \neq 0\). Then, by applying Lemma 3.4 we obtain (2.5), (2.6) and (2.7).

7. Proof of Theorem 2.3

Proof. Suppose that \(f_1\) and \(f_2\) are two nontrivial linearly independent solutions of (1.2). Then by Lemma 3.8, we have
\[
\rho_{p|q_1} \left(\frac{f_1}{f_2} \right) = +\infty, \quad \rho_{p+1|q_1} \left(\frac{f_1}{f_2} \right) = \rho_{p|q_1}(B)
\]
if \(p > q \geq 1\) and
\[
\rho_{p+1|q_1} \left(\frac{f_1}{f_2} \right) = \rho_{p+1|q_1}(B)
\]
if \(p > q \geq 1\). Set \(g = \frac{f_1}{f_2}\). Then
\[
w(z) = \frac{d_1(z) f_1(z) + d_2(z) f_2(z)}{b_1(z) f_1(z) + b_2(z) f_2(z)} = \frac{d_1(z) g(z) + d_2(z)}{b_1(z) g(z) + b_2(z)}.
\]
By Lemma 3.5, it follows that
\[
\rho_{p+1|q_1}(w) \leq \max \{\rho_{p+1|q_1}(d_j), \rho_{p+1|q_1}(b_j) (j = 1, 2), \rho_{p+1|q_1}(g)\}
\]
(7.1)
\[
= \rho_{p+1|q_1}(g).
\]
On the other hand
\[
g(z) = - \frac{b_2(z) w(z) - d_2(z)}{b_1(z) w(z) - d_1(z)}
\]
which implies by Lemma 3.5 that \(\rho_{p|q_1}(w) \geq \rho_{p|q_1}(g) = +\infty\) and
\[
\rho_{p+1|q_1}(g) \leq \max \{\rho_{p+1|q_1}(d_j), \rho_{p+1|q_1}(b_j) (j = 1, 2), \rho_{p+1|q_1}(w)\}
\]
(7.4)
\[
= \rho_{p+1|q_1}(w).
\]
By using (7.1)-(7.4), we obtain
\[
\rho_{p|q_1}(w) = \rho_{p|q_1}(g) = +\infty,
\]
\[
\rho_{p+1|q_1}(w) = \rho_{p+1|q_1}(g) \leq \rho_{p+1|q_1}(g) \leq \alpha_M
\]
if \(p > q \geq 1\) and
\[
\rho_{p+1|q_1}(w) = \rho_{p+1|q_1}(g) = \rho_{p|q_1}(B)
\]
if \(p > q \geq 1\).
ACKNOWLEDGMENT

The authors are grateful to the referee for his/her valuable comments which lead to the improvement of this paper.

REFERENCES

