HYERS-ULAM STABILITY OF FOURTH ORDER EULER’S DIFFERENTIAL EQUATIONS

A. K. TRIPATHY AND A. SATAPATHY

ABSTRACT. In this work, we investigate the Hyers-Ulam stability of the fourth order Euler’s differential equations of the form

\[t^4 y^{(iv)} + \alpha t^3 y''' + \beta t^2 y'' + \gamma t y' + \delta y = 0 \]

on any open interval \(I = (a, b) \), \(0 < a < b \leq \infty \) or \(-\infty < a < b < 0\), where \(\alpha, \beta, \gamma \) and \(\delta \) are complex constants.

1. INTRODUCTION

The study of stability problems for various functional equations originated from a talk given by S. M. Ulam in 1940. In that talk, Ulam [15] discussed a number of important unsolved problems. Among such problems, a problem concerning the stability of functional equations: “Give conditions in order for a linear mapping near an approximately linear mapping to exist” is one of them. In 1941, Hyers [1] gave an answer to the problem.

Furthermore, the result of Hyers [1] has been generalized by Rassias [12]. After that many authors have extended the Ulam’s stability problems to other functional equations and generalized Hyer’s result in various directions (see for e.g. [2, 6, 9, 10, 11, 13, 14]). Thereafter, Ulam’s stability problem for functional equations was replaced by stability of differential equations. The differential equation

\[a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \cdots + a_0(t)y(t) + h(t) = 0 \]

has Hyers-Ulam stability, if for given \(\epsilon > 0 \), \(I \) be an open interval and for any function \(f \) satisfying the differential inequality

\[|a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \cdots + a_0(t)y(t) + h(t)| \leq \epsilon, \]

then there exists a solution \(f_0 \) of the above differential equation such that \(|f(t) - f_0(t)| \leq K(\epsilon) \) and \(\lim_{\epsilon \to 0} K(\epsilon) = 0 \), for \(t \in I \). If the preceding statement is also true when we replace \(\epsilon \) and \(K(\epsilon) \) by \(\phi(t) \) and \(\psi(t) \) respectively, where \(\phi, \psi : I \to [0, \infty) \) are functions not depending on \(f \) and \(f_0 \) explicitly, then we say that the corresponding differential equation has the generalized Hyers-Ulam stability.

S. M. Jung has investigated the Hyers-Ulam stability of linear differential equations of different classes. Among his works (see for e.g [3, 4, 5, 6, 7, 8]), we are motivated by the results of [4], where he has studied the Hyers-Ulam stability of the following Euler’s differential equations:

\[ty'(t) + ay(t) + \beta t^r x_0 = 0 \]

and also applied this result for the investigation of the Hyers-Ulam stability of the differential equation

\[t^2 y''(t) + aty'(t) + \beta y(t) = 0, \]

where \(a, \beta \) and \(r \) are complex constants and \(x_0 \neq 0 \) is a fixed element. In [15], the authors have established the Hyers-Ulam stability of the following Euler’s differential equations

\[t^4 y''(t) + aty'(t) + \beta y(t) + \gamma t^r x_0 = 0 \]

and

\[t^2 y''(t) + at^2 y'(t) + \beta t^r y(t) + \gamma y(t) = 0, \]

where \(a, \beta, \gamma \) and \(r \) are complex constants with \(x_0 \neq 0 \) is a fixed element. In fact, Hyers-Ulam stability of (1.2) depends on the Hyers-Ulam stability of (1.1) for every \(x_0 \neq 0 \). In particular, we have the following results:

\[\text{Corresponding author} \]

\[\text{Key words and phrases.} \quad \text{Hyers-Ulam stability, Euler’s differential equation.} \]
Theorem 1.1. [15] Let X be a Complex Banach space and let $I = (a, b)$ be an open interval with either $0 < a < b \leq \infty$ or $-\infty < a < b < 0$. Assume that $\phi : I \rightarrow [0, \infty)$ is given, and that a, β, γ, r are complex constants, x_0 is a fixed element of X. Furthermore, suppose a twice continuously differentiable function $f : I \rightarrow X$ satisfies
\[
\bigg\| t^{\alpha - 1} \phi(t) + \beta t y'(t) + \gamma t y(t) + \gamma t x_0 \bigg\| \leq \phi(t), \ t \in I.
\]
Let l and m be two numbers so that $a = 1 - l - m$ and $\beta = lm$. If $t^{r-1}, t^{r-m-1}, t^{m-1,1}, t^{m-1,1}$ and $t^{l-1}\eta(t)$ are integrable on (a, c), for any c with $a = c \leq b$, then there exists a unique solution $f_0 : I \rightarrow X$ of the differential equation (1.1) such that
\[
\bigg| f(t) - f_0(t) \bigg| \leq \bigg| t^{r-1} \bigg| \int_{t}^{b} u^{-l-1}\psi(u)du
\]
for all $t \in I$, where
\[
\psi(t) = \bigg| t^{m} \bigg| \int_{t}^{b} u^{-m-1}\phi(u)du.
\]

Theorem 1.2. [15] Let X be a Complex Banach space and $I = (a, b)$ be an open interval such that either $0 < a < b \leq \infty$ or $-\infty < a < b < 0$. Assume that $\theta : I \rightarrow [0, \infty)$ is given along with α, β, γ and r are complex constants and f, m, n are characteristic roots of (1.2), so that $a = 3 - (l + m + n)$, $\beta = lm + mn + nl - l - m + n + 1$ and $\gamma = -(lmn)$. Let
\[
l^{m-1}, l^{m-1}, l^{m-1}, l^{m-1}, l^{m-1}, l^{m-1}, l^{m-1}, l^{m-1}, 1^{m-1}, 1^{m-1},
\]
and $t^{l-1}\eta(t)$ are integrable on (a, c) with $a = c \leq b$, where
\[
\lambda(t) = \bigg| t^{m} \bigg| \int_{t}^{b} u^{-m-1}\lambda(u)du,
\]
\[
\eta(t) = \bigg| t^{m} \bigg| \int_{t}^{b} u^{-m-1}\lambda(u)du.
\]
Suppose that $f \in C^{0}(I, X)$ and satisfies
\[
\bigg| \bigg| t^{a\alpha} y''(t) + \alpha t^a y''(t) + \beta t y'(t) + \gamma y(t) \bigg| \bigg| \leq \theta(t),
\]
for all $t \in I$. Then there exists a unique solution $f_0 \in C^{0}(I, X)$ of (1.2) such that
\[
\bigg| f(t) - f_0(t) \bigg| \leq \bigg| t^{r-1} \bigg| \int_{t}^{b} u^{-l-1}\eta(u)du
\]
for all $t \in I$. Theorem 1.3. [15] Let X be a Complex Banach space and let $I = (a, b)$ be an open interval such that $0 < a < b \leq \infty$ or $-\infty < a < b < 0$. Assume that a function $\phi : I \rightarrow [0, \infty)$ is given and that $h : I \rightarrow X$ is a continuous function. Furthermore, suppose a continuously differenntiable function $f : I \rightarrow X$ satisfies
\[
\bigg| f'(t) + ay(t) + h(t) \bigg| \leq \phi(t), \ t \in I.
\]
If both $t^{\alpha - 1}\phi(t)$ and $t^{\alpha - 1}h(t)$ are integrable on (a, c) for any c with $a = c \leq b$, then there exists a unique solution $f_0 : I \rightarrow X$ of the differential equation
\[
ty'(t) + ay(t) + h(t) = 0
\]
such that
\[
\bigg| f(t) - f_0(t) \bigg| \leq \bigg| t^{r-1} \bigg| \int_{t}^{b} u^{-l-1}\psi(u)du, \ t \in I,
\]
where
\[
f_0(t) = \left(\frac{a}{r} \right) x - t^{\alpha-1} \int_{a}^{t} u^{-l-1}h(u)du,
\]
for unique $x \in X$ and a is a complex constant.

The aim of this work is to investigate the generalized Hyers-Ulam stability of the following Euler’s differential equations in the form
\[
t^{a\alpha} y''(t) + \alpha t^a y''(t) + \beta t y'(t) + \gamma y(t) + \delta t^a x_0 = 0
\]
and
\[
t^{a\alpha} y''(t) + \alpha t^a y''(t) + \beta t y'(t) + \gamma y(t) + \delta t^a x_0 = 0
\]
for all $t \in I$, where $x_0 \in X$ be a fixed element and $I = (a, b)$ with $0 < a < b \leq \infty$ or $-\infty < a < b < 0$, then there exists a unique solution $f_0 \in C^{0}(I, X)$ of (1.5) such that
\[
\bigg| f(t) - f_0(t) \bigg| \leq \bigg| t^{r-1} \bigg| \int_{t}^{b} u^{-l-1}\theta(u)du
\]
for all $t \in I$, where
\[
\theta(t) = \bigg| t^{r-1} \bigg| \int_{t}^{b} u^{-l-1}\theta(u)du,
\]
\[
\psi(t) = \bigg| t^{r-1} \bigg| \int_{t}^{b} u^{-l-1}\phi(u)du,
\]
and l, m, n are the characteristic roots of (1.3) such that $\alpha = 3 - (l + m + n)$, $\beta = lm + mn + nl - l - m - n + 1$ and $\gamma = -(lmn)$. Also, we apply this result to investigate the Hyers-Ulam stability of (1.4). Throughout this work, we let $I = (a, b)$ either $0 < a < b \leq \infty$ or $-\infty < a < b < 0$.

2. Hyers-Ulam Stability

Let \(l, m \) and \(n \) be the characteristic roots of (1.3) such that \(\alpha = 3 - (l + m + n), \beta = lm + mn + nl - l - m - n + 1 \) and \(\gamma = -(lmn) \) with \(g(r) = r^3 + (\alpha - 3)r^2 + (\beta - \alpha + 2)r + \gamma. \) For fixed \(x_0 \neq 0, \) the possible solutions of (1.3) in the class of real valued functions defined on \(I \) are given by

(I) When \(g(r) \neq 0, \)
\[
y(t) = \begin{cases}
c_1 t^l + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|}{g(r)}, \\
for \ l \neq m \neq n,
\end{cases}
\]
\[
y(t) = \begin{cases}
c_1 t^l + c_2 t^m - \frac{\delta x_0 t^l \ln|t|}{g(r)}, \\
for \ l = m \neq n,
\end{cases}
\]
\[
y(t) = \begin{cases}
c_1 + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|}{g(r)}, \\
for \ l = n \neq m,
\end{cases}
\]
\[
y(t) = \begin{cases}
c_1 + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|^2}{g(r)}, \\
for \ l = m = n.
\end{cases}
\]

(II) When \(g(r) = 0 \neq g'(r), \)
\[
y(t) = \begin{cases}
c_1 t^l + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|}{g(r)}, \\
for \ l \neq m \neq n,
\end{cases}
\]
\[
y(t) = \begin{cases}
c_1 t^l + c_2 t^m - \frac{\delta x_0 t^l \ln|t|}{g(r)}, \\
for \ l = m \neq n,
\end{cases}
\]
\[
y(t) = \begin{cases}
c_1 + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|^2}{g(r)}, \\
for \ l = n \neq m,
\end{cases}
\]
\[
y(t) = \begin{cases}
c_1 + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|^2}{g(r)}, \\
for \ l = m = n.
\end{cases}
\]

Remark 2.1. Indeed, \(g'(r) = 3r^3 + 2(\alpha - 3)r + (\beta - \alpha + 2). \) If \(g(r) = 0, \) then either \(r - l = 0 \) or \(r - m = 0 \) or \(r - n = 0. \) Therefore, \(r - l = 0 \) and \(g'(r) \neq 0 \) implies that \(3r^3 + 2(\alpha - 3)r + (\beta - \alpha + 2) = (r - m)(r - n) \neq 0. \) So \(r - m \neq 0 \) and \(r - n \neq 0. \) Similarly, when \(r - m = 0 \) and \(g'(r) \neq 0 \) implies \(r - l \neq 0 \) and \(r - n \neq 0 \) and when \(r - n = 0 \) and \(g'(r) \neq 0 \) implies \(r - l \neq 0 \) and \(r - m \neq 0. \) Hence the first solution for \(l \neq m \neq n \) could be any one of the following:

\[
\begin{align*}
c_1 t^l + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|}{(r - m)(r - n)} \\
r - l = 0, r - m \neq 0, r - n \neq 0,
\end{align*}
\]
\[
\begin{align*}
c_1 t^l + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|}{(r - l)(r - m)} \\
r - n = 0, r - l \neq 0, r - m \neq 0,
\end{align*}
\]
\[
\begin{align*}
c_1 t^l + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|}{(r - l)(r - n)} \\
r - m = 0, r - l \neq 0, r - n \neq 0.
\end{align*}
\]

(III) When \(g(r) = 0 \neq g'(r), \) but \(g''(r) \neq 0, \)
\[
y(t) = \begin{cases}
(c_1 + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|^2}{g(r)}), \\
for \ l = m = r, r - n \neq 0,
\end{cases}
\]
\[
y(t) = \begin{cases}
(c_1 t^l + (c_2 + c_3 t^m) \ln|t| - \frac{\delta x_0 t^l \ln|t|}{g(r)}), \\
for \ m = n = r, r - l \neq 0,
\end{cases}
\]
\[
y(t) = \begin{cases}
(c_1 + c_2 t^m + c_3 t^n - \frac{\delta x_0 t^l \ln|t|^2}{g(r)}), \\
for \ l = n = r, r - m \neq 0.
\end{cases}
\]

(IV) When \(g(r) = 0 \neq g'(r) = g''(r), \)
\[
y(t) = \begin{cases}
(c_1 + c_2 t^m + c_3 t^n + (\ln|t|)^2 \frac{\delta x_0 t^l}{g^3(r)}), \\
for \ l = n = r, r - m \neq 0.
\end{cases}
\]

where \(c_1, c_2 \) and \(c_3 \) are arbitrary constants.

Theorem 2.1. Let \(X \) be a Complex Banach space. Assume that a function \(\phi : I \rightarrow [0, \infty) \) is given, that \(\alpha, \beta, \gamma, \delta, \tau \) are complex constants and that \(x_0 \) is a fixed element of \(X \). Furthermore, suppose a thrice continuously differentiable function \(f : I \rightarrow X \) satisfies the differential inequality (1.5). If \(t^{r-1}, t^{m-1}, t^{n-1}, t^{m-n-1}, t^{m-1} - t^{m-n-1} \ln |\frac{t}{2}|, t^{r-n-1} - t^{m-n-1} \ln |\frac{t}{2}|, t^{r-n-1} - t^{m-n-1} \ln |\frac{t}{2}|, t^{r-n-1} t^{m-n-1} \ln |\frac{t}{2}|, t^{r-n-1} t^{m-n-1} \ln |\frac{t}{2}|, t^{r-n-1} \phi(t), t^{r-n-1} \psi(t) \) and \(t^{m-n-1} \tau(t) \) are integrable on \((a, c), \) for any \(c \) with \(a < c \leq b, \) then there exists a unique solution \(f_0 \in C^3(I, X) \) of (1.3) such that (1.6) holds for any \(t \in I, \) where \(l, m \) and \(n \) are the roots of \(g(r) = 0. \)

Proof. To prove the theorem it is sufficient to consider the following cases:

(i) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(ii) \((r - l)(r - m)(r - n) \neq 0, l \neq m = n; \)

(iii) \((r - l)(r - m)(r - n) \neq 0, l = m \neq n; \)

(iv) \((r - l)(r - m)(r - n) \neq 0, l = m = n; \)

(v) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(vi) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(vii) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(viii) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(ix) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(x) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(xi) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(xii) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(xiii) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(xiv) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

(xv) \((r - l)(r - m)(r - n) \neq 0, l \neq m \neq n; \)

Case-(i) Suppose that \(X \) is a Complex Banach space and a thrice continuously differentiable function \(f : I \rightarrow X \) is satisfying the differential inequality (1.3). Let \(l, m \) and \(n \) be the roots of \(g(u) = u^3 + (\alpha - 3)u^2 + (\beta - \alpha + 2)u + \gamma = 0. \) Define \(h : I \rightarrow X \)
such that \(h(t) = tf(t) - nf(t) \). Then we have
\[
\begin{align*}
\| t^2 h''(t) + (1 - l - m)t h(t) + \ln h(t) + \delta t^r x_0 \| &= \| t^3 f''(t) + \alpha t^2 f'(t) + \beta t f(t) + \gamma f(t) + \delta t^r x_0 \|
\leq \phi(t).
\end{align*}
\]
Hence by Theorem 1.1 and then using (1.7), it follows that there exists a unique solution \(h_0 : I \to X \) of the differential equation
\[
t^2 y''(t) + (1 - l - m)y'(t) + \ln y(t) + \delta t^r x_0 = 0
\]
such that
\[
(2.1) \quad \| h(t) - h_0(t) \| \leq \| f(t) - n f(t) - h_0(t) \| \leq \phi(t).
\]
where \(h_0(t) = k_1 t^l + k_2 r^m + k_3 t^r \) with
\[
\begin{align*}
k_1 &= \left\{ \frac{x_1}{a^m} - \frac{\delta x_0 a^r}{(r-l)(m-l) - \delta^r(m-l)} \right\} \, t^n, \\
k_2 &= \left\{ \frac{x_2}{a^m} - \frac{\delta x_0 a^r}{(r-m)(l-m)} \right\}, \\
k_3 &= -\frac{\delta x_0}{(r-l)(r-m)}.
\end{align*}
\]
Consequently, (2.1) becomes
\[
\| f(t) - f_0(t) \| \leq \| v^n \| \int_a^b u^{-n-1} v(t) \mathrm{d}u, \quad t \in I
\]
provided \(t^{-n-1} \theta(t) \) and \(t^{-n-1} h_0(t) \) are integrable on \((a, c)\) for any \(c \) with \(a < c < b \). As \(t^{l-n-1}, t^{m-n-1}, t^{r-n-1}, \ln \frac{t}{a} \), \(t^{n-1} \ln \frac{x}{l} \) and \(t^{l-n-1} \ln \frac{x}{l} \) are integrable, then so also \(t^{-n-1} h_0(t) \). According to Theorem 1.3, \(f_0(t) \) is given by
\[
(2.2) \quad f_0(t) = \left(\frac{t}{a} \right)^n \tilde{x} + t^n \int_a^t u^{-n-1} h_0(u) \mathrm{d}u,
\]
where \(\tilde{x} \) is a limit point in \(X \). It is easy to verify that
\[
\int_a^t u^{-n-1} h_0(u) \mathrm{d}u = \frac{k_1}{l-n} \left(t^{l-n} - d^{l-n} \right) + \frac{k_2}{m-n} \left(t^{m-n} - a^{m-n} \right) + \frac{k_3}{r-n} \left(t^{r-n} - a^{r-n} \right).
\]
As a result,
\[
f_0(t) = \frac{k_1}{l-n} t^l + \frac{k_2}{m-n} t^m + \frac{k_3}{r-n} t^r \delta x_0 t^r \frac{\gamma}{\delta x_0 t^r}.
\]
\[\text{Case-(ii)}\] Proceeding as in Case (i), we can obtain
\[
\int_a^t u^{-n-1} h_0(u) \mathrm{d}u = \frac{k_1}{l-n} \left(t^{l-n} - d^{l-n} \right) + k_2 \ln \frac{t}{a} + \frac{k_3}{r-n} \left(t^{r-n} - a^{r-n} \right).
\]
Consequently,
\[
f_0(t) = \frac{k_1}{l-m} t^l + \frac{\delta x_0 a^r}{a^m} \left(t^{l-n} - d^{l-n} \right) + k_2 \ln \frac{t}{a} + \frac{k_3}{r-n} \left(t^{r-n} - a^{r-n} \right),
\]
where \(k_1, k_2, k_3 \) are same as in Case (i).
\[\text{Case-(iii)}\] Proceeding as before with
\[
h_0(t) = \{ k_4 + k_5 \ln \frac{t}{a} \} \, t^l + k_6 t^r
\]
and
\[
k_4 = \frac{x_2}{a^m} \left(\frac{\delta x_0 a^r}{(r-l)^2} \right),
\]
k_5 = \frac{x_2}{a^m} \left(\frac{\delta x_0 a^r}{l-n} \right),
\]
k_6 = \frac{-\delta x_0}{(r-l)^2}.
\]
it is easy to verify that
\[
\int_a^t u^{-n-1} h_0(u) \mathrm{d}u = \frac{k_3}{l-n} \left(t^{l-n} - d^{l-n} \right) + \frac{k_5}{l-n} \left(\ln \frac{t}{a} - \frac{1}{l-n} \right) \, t^{l-n} + \frac{k_1}{l-n} \left(t^{l-n} - \frac{d^{l-n}}{(l-n)^2} \right) + \frac{k_4}{l-n} \left(t^{l-n} - \frac{d^{l-n}}{(l-n)^2} \right),
\]
\[
\text{Hence, from (2.2)} \quad f_0(t) = \left[\frac{k_4}{l-n} - \frac{k_6}{l-n} \right] \, t^l \ln \frac{t}{a} + \frac{k_1}{l-n} \left(t^{l-n} - d^{l-n} \right) + \frac{k_2}{m-n} \left(t^{m-n} - a^{m-n} \right) + \frac{k_5}{l-n} \left(t^{l-n} - \frac{d^{l-n}}{(l-n)^2} \right) - \frac{k_3}{r-n} \left(t^{r-n} - a^{r-n} \right).
\]
\[\text{Case-(iv)}\] We proceed as in Case (i) and it is easy to see that
\[
\int_a^t u^{-n-1} h_0(u) \mathrm{d}u = k_1 \ln \frac{t}{a} + \frac{k_2}{m-n} \left(t^{m-n} - a^{m-n} \right) + \frac{k_3}{r-n} \left(t^{r-n} - a^{r-n} \right).
\]
So from (2.2), it happens that
\[
f_0(t) = \frac{k_2}{m-n} t^m + \frac{k_3}{r-n} t^r \frac{\delta x_0 t^r}{g(r)}.
\]
Case-(v) In this case we have that
\[h_0(t) = \left(k_1 + k_0 \ln \left| \frac{t}{a} \right| \right) t^l + k_0 t^r, \]
where \(k_4, k_5, \) and \(k_6 \) are same as in Case (iii). Therefore,
\[\int_a^t u^{-n-1} h_0(u) du = k_4 \ln \left| \frac{t}{a} \right| + \]
\[+ \frac{k_5}{2} \left(\ln \left| \frac{t}{a} \right| \right)^2 + \frac{k_6}{r-n} \left(t^{r-n} - a^{r-n} \right) \]
implies from (2.2) that
\[f_0(t) = \left(\frac{x}{a^n} - \frac{k_0 t^{r-n}}{(r-n)} + \frac{k_4}{a^n} \ln \left| \frac{t}{a} \right| + \frac{k_5}{r-n} \left(\ln \left| \frac{t}{a} \right| \right)^2 \right) \]
\[\left(\frac{x}{a^n} - \frac{k_0 t^{r-n}}{(r-n)} + \frac{k_4}{a^n} \ln \left| \frac{t}{a} \right| + \frac{k_5}{r-n} \left(\ln \left| \frac{t}{a} \right| \right)^2 \right) t^l \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

Case-(vi) In this case, we notice that
\[h_0(t) = k_7 t^l + k_5 t^m + k_0 t^r \ln \left| \frac{t}{a} \right|, \]
where
\[k_7 = \left(\frac{x}{a^n} + \frac{\delta x_0}{a^n} \right) \]
\[+ \frac{k_9}{a^n} \left(t^m - a^m \right) + \frac{k_8}{a^n} \left(t^l - a^l \right) \]
\[k_8 = \left(\frac{x t^l}{a^n} - \frac{\delta x_0 a^{l-n}}{a^n} \right) \]
\[k_9 = - \frac{\delta x_0}{a^n}, \]

and
\[\int_a^t u^{-n-1} h_0(u) du = \frac{k_7}{a^n} \left(t^m - a^m \right) + \frac{k_8}{a^n} \left(t^l - a^l \right) \]
\[+ \frac{k_9}{a^n} \left(t^{m-n} - a^{m-n} \right) \]
\[+ \frac{k_{10}}{m-n} \left(t^{n-m} - a^{n-m} \right) \]
\[+ \frac{k_{11}}{r-n} \left(t^{r-n} - a^{r-n} \right) \]
\[+ \frac{k_{12}}{(r-n)^2} \left(\ln \left| \frac{t}{a} \right| \right) \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

Hence from (2.2), it follows that
\[f_0(t) = \left(\frac{k_7}{l-n} - \frac{k_9}{a^n}, \right) \]
\[+ \frac{k_8}{m-n} t^m + \frac{k_9}{m-n} \]
\[+ \frac{\delta x_0}{m-n} \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

Case-(vii) Here, we have
\[h_0(t) = k_1 t^l + k_5 t^m + k_9 t^r, \]

and
\[\int_a^t u^{-n-1} h_0(u) du = \frac{k_1}{l-n} \left(t^l - a^l \right) + \]
\[+ \frac{k_2}{m-n} \left(t^m - a^m \right) + \frac{k_3}{a^n} \ln \left| \frac{t}{a} \right|, \]

where \(k_1, k_2, \) and \(k_3 \) are same as in Case-(i). Applying this in (2.2), we obtain
\[f_0(t) = \left(\frac{k_1}{l-n} \right) t^l + \frac{k_2}{m-n} t^m + \]
\[+ \frac{\delta x_0}{a^n} \left(t^m - a^m \right) \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

Case-(viii) For this case, \(h_0(t) \) becomes
\[h_0(t) = k_{10} t^l + k_{11} t^m + k_{12} t^r \ln \left| \frac{t}{a} \right|, \]
where
\[k_{10} = \left(\frac{x}{a^n} - \frac{k_0 t^{r-n}}{(r-n)} \right) \]
\[+ \frac{k_{11}}{m-n} \left(t^{m-n} - a^{m-n} \right) \]
\[+ \frac{k_{12}}{r-n} \left(t^{r-n} - a^{r-n} \right) \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

Using
\[\int_a^t u^{-n-1} h_0(u) du = \frac{k_{10}}{l-n} \left(t^l - a^l \right) + \]
\[+ \frac{k_{11}}{m-n} \left(t^m - a^m \right) \]
\[+ \frac{k_{12}}{r-n} \left(t^r - a^r \right) \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

in (2.2), we find
\[f_0(t) = \left(\frac{k_{10}}{l-n} \right) t^l + \left(\frac{k_{11}}{m-n} \right) t^m + \]
\[+ \frac{\delta x_0}{a^n} \left(t^m - a^m \right) \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

Case-(ix) Here \(h_0(t) = k_7 t^l + k_9 t^m + k_9 t^r \ln \left| \frac{t}{a} \right| \), where \(k_7, k_9, \) and \(k_9 \) are same as in Case-(vi). Using the fact
\[\int_a^t u^{-n-1} h_0(u) du = \frac{k_7}{l-n} \left(t^l - a^l \right) + \]
\[+ \frac{k_9}{r-n} \left(t^{r-n} - a^{r-n} \right) \]
\[- \frac{\delta x_0 t^r}{(r-n)(r-n)} \ln \left| \frac{t}{a} \right|. \]

in (2.2), it follows that
\[f_0(t) = \left(\frac{k_7}{l-m} \right) t^l + \]
\[+ \frac{\delta x_0}{a^n} \left(t^m - a^m \right) \]
\[- \frac{\delta x_0 t^r}{(r-m)(r-m)} \ln \left| \frac{t}{a} \right|. \]

Case-(x) In this case, \(h_0(t) = \left\{ k_4 + k_6 \ln \left| \frac{t}{a} \right| \right\} t^l + k_9 t^r \), where \(k_4, k_6, \) and \(k_9 \) are same as in Case-(iii).
Now, it is easy to verify that
\[
\int_a^t v^{-n-1} h_0(v) dv = \frac{k_4}{l - n} \left(\frac{t^{l - n}}{l - n} - a^{l - n} \right) + \\
+ \frac{k_5}{l - n} \left[\frac{t^{l - n}}{l - n} \ln \frac{t}{a} - \frac{a^{l - n}}{l - n} \right] + k_6 \ln \frac{t}{a}.
\]
Hence, from (2.2) we obtain
\[
f_0(t) = \left[\left\{ \frac{k_4}{l - n} \right\} \left(\frac{t^{l - n}}{l - n} - a^{l - n} \right) + \frac{k_5}{l - n} \ln \frac{t}{a} \right] t^l + \\
+ \left[\frac{a}{a^n} - \frac{k_4 a^{l - n}}{l - n} + \frac{k_5 a^{l - n}}{(l - n)^2} \right] t^m - \\
- \frac{\delta x_0 t^r}{2(r - l)^2} \ln \frac{t}{a}.
\]

Case (xi) In this case, \(h_0(t) = k_{10} t^l + k_{11} t^m + k_{12} t^r \ln \frac{t}{a} \), where \(k_{10}, k_{11} \) and \(k_{12} \) are same as in Case (viii). Clearly,
\[
\int_a^t v^{-n-1} h_0(v) dv = k_{10} \ln \frac{t}{a} + \\
+ \frac{k_{11}}{m - n} (t^{m-n} - a^{m-n}) + \\
+ \frac{k_{12}}{r - n} \left[\frac{t^{r-n}}{r - n} - \frac{a^{r-n}}{r - n} \right] t^m - \\
- \frac{\delta x_0 t^r}{2(r - l)^2} \ln \frac{t}{a}.
\]
and (2.2) reduces to
\[
f_0(t) = \left[\frac{a}{a^n} - \frac{k_{11}}{m - n} + \frac{k_{12}}{r - n} \right] t^m - \frac{\delta x_0 t^r}{2(r - l)^2} \ln \frac{t}{a}.
\]

Case (xii) In this case we obtain
\[
h_0(t) = \left[\frac{x_6}{a^l} + \frac{x}{a^l} \ln \frac{t}{a} \right] t^l - \frac{\delta x_0 t^r}{2} \left(\ln \frac{t}{a} \right)^3
\]
and thus
\[
\int_a^t v^{-n-1} h_0(v) dv = \frac{x_6}{a^l(t-n)} \left[t^{l-n} - a^{l-n} \right] + \\
+ \frac{x}{a^l(t-n)} \left[\frac{t^{l-n}}{l-n} - \frac{a^{l-n}}{l-n} \right] - \frac{\delta x_0}{a^n} \times \\
\times \left[t^{l-n} \left(\ln \frac{t}{a} \right)^3 - \frac{x_6}{a^n(t-n)^2} \ln \frac{t}{a} + \frac{x}{a^n(t-n)^2} - \frac{\delta x_0}{a^n} \left(\ln \frac{t}{a} \right)^3 \right]
\]
which on applying in (2.2), we get
\[
f_0(t) = \left[\frac{x_6}{a^l(t-n)} - \frac{x}{a^l(t-n)^2} - \frac{\delta x_0}{a^n} \times \\
+ \left[\frac{x}{a^l(t-n)^2} - \frac{\delta x_0}{a^n(t-n)^2} \ln \frac{t}{a} \right] t^l \right] + \\
\left[\frac{a}{a^n} - \frac{x_6}{a^n(t-n)} + \frac{x}{a^n(t-n)^2} + \frac{\delta x_0 a^{l-n}}{(l-n)^2} \right] t^m - \\
- \frac{\delta x_0 t^r}{2(r - l)^2} \left(\ln \frac{t}{a} \right)^3.
\]

Case (xiii) Here \(h_0(t) = k_{10} t^l + k_{11} t^m + k_{12} t^r \ln \frac{t}{a} \), where \(k_{10}, k_{11} \) and \(k_{12} \) are same as in Case (viii) and
\[
\int_a^t v^{-n-1} h_0(v) dv = \frac{k_{10}}{l - n} \left(t^{l-n} - a^{l-n} \right) + \\
+ \frac{k_{11}}{l - n} \ln \frac{t}{a} + \frac{k_{12}}{2(r - l)^2} \left(\ln \frac{t}{a} \right)^3.
\]
Applying this in (2.2), it follows that
\[
f_0(t) = \frac{k_{10}}{l - n} t^l + \left[\frac{\delta a}{a^n} - \frac{k_{11}}{l - n} \ln \frac{t}{a} \right] t^m - \\
- \frac{\delta x_0 t^r}{2(r - l)} \left(\ln \frac{t}{a} \right)^3.
\]

Case (xiv) In this case,
\[
h_0(t) = k_7 t^l + k_8 t^m + k_9 t^r \ln \frac{t}{a},
\]
where \(k_7, k_8 \) and \(k_9 \) are same as in Case (vi) and
\[
\int_a^t v^{-n-1} h_0(v) dv = k_7 \ln \frac{t}{a} + \\
+ \frac{k_8}{m - n} (t^{m-n} - a^{m-n}) + \frac{k_9}{2} \left(\ln \frac{t}{a} \right)^3.
\]
Ultimately, (2.2) becomes
\[
f_0(t) = \left(\frac{k_8}{m - n} \right) t^m + \\
+ \left[\frac{\delta a}{a^n} - \frac{k_8}{m - n} \ln \frac{t}{a} \right] t^m - \\
- \frac{\delta x_0 t^r}{2(r - m)} \left(\ln \frac{t}{a} \right)^3.
\]

Case (xv) For this case,
\[
h_0(t) = \left[\frac{x_6}{a^l} + \frac{x}{a^l} \ln \frac{t}{a} \right] t^l - \frac{\delta x_0 t^r}{2} \left(\ln \frac{t}{a} \right)^3
\]
and hence
\[
\int_a^t v^{-n-1} h_0(v) dv = \frac{x_6}{a^l(t-n)} \left[t^{l-n} - a^{l-n} \right] + \\
+ \frac{x}{a^l(t-n)} \left[\frac{t^{l-n}}{l-n} - \frac{a^{l-n}}{l-n} \right] - \frac{\delta x_0}{a^n} \times \\
\times \left[t^{l-n} \left(\ln \frac{t}{a} \right)^3 - \frac{x_6}{a^n(t-n)^2} \ln \frac{t}{a} + \frac{x}{a^n(t-n)^2} - \frac{\delta x_0}{a^n} \left(\ln \frac{t}{a} \right)^3 \right]
\]
which on applying in (2.2), we get
\[
f_0(t) = \left[\frac{x_6}{a^l(t-n)} - \frac{x}{a^l(t-n)^2} - \frac{\delta x_0}{a^n} \times \\
+ \left[\frac{x}{a^l(t-n)^2} - \frac{\delta x_0}{a^n(t-n)^2} \ln \frac{t}{a} \right] t^l \right] + \\
\left[\frac{a}{a^n} - \frac{x_6}{a^n(t-n)} + \frac{x}{a^n(t-n)^2} + \frac{\delta x_0 a^{l-n}}{(l-n)^2} \right] t^m - \\
- \frac{\delta x_0 t^r}{2(r - l)^2} \left(\ln \frac{t}{a} \right)^3.
\]
Using this in (2.2), \(f_0(t) \) can be obtained as
\[
f_0(t) = \left[\frac{\delta a}{a^n} + \frac{x_6}{a^l(t-n)} + \frac{x}{a^l(t-n)^2} + \frac{\delta x_0 a^{l-n}}{(l-n)^2} \right] t^l - \\
- \frac{\delta x_0 t^r}{6} \left(\ln \frac{t}{a} \right)^3.
\]
Here \(\delta, x, x_1, x_2, x_3, x_4 \) and \(x_6 \) are all limit points in \(X \). This completes the proof of the theorem. □
3. Main Results

In this section, we investigate the Hyers-Ulam stability of (1.4) on I. Assume that I, m, n, and p are the characteristic roots (1.4) such that

\[\alpha = \{6 - (l + m + n + p)\}, \]

\[\beta = \{7 - 3(l + m + n + p) + (lm + mn + nl + np + lp + mp)\}, \]

\[\gamma = \{1 - (l + m + n + p) + (lm + mn + nl + mp + lp + np) - (lmm + lnp + lmp)\}, \]

\[\delta = lmn, \alpha_1 = \{3 - (l + m + n)\}, \]

\[\beta_1 = \{lm + mn + nl - l - m - n + 1\} \] and

\[\gamma_1 = -(lmm). \]

Theorem 3.1. Let \(X \) be a Complex Banach space. Assume that a function \(\eta : I \to [0, \infty) \) is given. Furthermore assume that \(t^{p-1}, \ t^{m-1}, \ t^{p-1} - n, \ t^{m-1} - n, \ t^{m-1} - n^2, \ t^{n-1}, \ t^{n-1} - n \), \(t^{n-1} \eta(t) \), \(t^{n-1} \phi(t) \), and \(t^{n-1} \theta(t) \) are integrable over the interval \((a, c)\) with \(a \leq c \), where

\[\phi(t) = \int_t^b u^{-p-1} \eta(u)du, \]

\[\psi(t) = \int_t^b u^{-m-1} \phi(u)du, \]

\[\theta(t) = \int_t^b u^{-1} \psi(u)du. \]

Suppose that \(f \in C^4(I, X) \) satisfies the differential inequality

\[\left\| t^4 y^{(iv)}(t) + \alpha t^3 y^{(iv)}(t) + \beta t^2 y^{(iv)}(t) + \gamma ty(t) + \delta y(t) \right\| \leq \eta(t), \]

for all \(t \in I \). Then there exists a unique solution \(f_0 \in C^4(I, X) \) of (1.4) such that

\[\left\| f(t) - f_0(t) \right\| \leq \int_t^b u^{-n-1} \theta(u)du. \]

Proof. Let \(X \) be a Complex Banach space and \(f : I \to X \) such that (3.1) hold, for \(t \in I \). Define \(s : I \to X \) such that

\[s(t) = t^3 f''''(t) + \alpha t^3 f''''(t) + \beta t f'(t) + \gamma f(t). \]

Indeed,

\[\left\| t^3 s(t) - ps(t) \right\| = \left\| t^4 f^{(iv)}(t) + \alpha t^3 f^{(iv)}(t) + \beta t^2 f^{(iv)}(t) + \gamma t f'(t) + \delta f(t) \right\| \leq \eta(t). \]

From Theorem 1.3, it follows that there exists a unique solution \(s_0 : I \to X \) of the differential equation

\[t^3 s(t) - ps(t) = 0 \]

such that

\[\left\| s(t) - s_0(t) \right\| \leq \int_t^b u^{-p-1} \eta(u)du, \]

where \(s_0(t) = \left(\frac{1}{t}\right)^p x_0 \) and \(x_0 \in X \) is a limit point. If we denote

\[\phi(t) = \int_t^b u^{-p-1} \eta(u)du, \]

then clearly \(\phi : I \to [0, \infty) \) and

\[\left\| s(t) - s_0(t) \right\| \leq \phi(t). \]

Therefore, from (3.2) and (3.3) we get

\[\left\| f(t) - f_0(t) \right\| \leq \int_t^b u^{-n-1} \theta(u)du, \]

where

\[\theta(t) = \int_t^b u^{-n-1} \psi(u)du. \]

Here, \(f_0(t) \) can be made any of the following cases

\[i) \quad f_0(t) = \frac{e_1}{l - n} t^d + \frac{e_2}{m - n} t^{a_n} + \frac{e_3}{p - n} t^{a_p}, \]

where

\[e_1 = \left\{ \frac{x_1}{a^2} + \frac{x_0}{a(p - l)(m - l)} - \frac{x}{a^2(l - m)} \right\}, \]

\[e_2 = \left\{ \frac{x}{a^m(l - m)} + \frac{x_0}{a^m(m - l)(l - m)} \right\} \] and

\[e_3 = \frac{x_0}{a^p(p - l)(p - m)} \] and

\[ii) \quad f_0(t) = \left(\frac{e_1}{l - n}\right) t^d + \frac{e_2}{m - n} t^{a_n} + \frac{e_3}{p - n} t^{a_p}, \]

where

\[e_1 = \left\{ \frac{x_1}{a^2} + \frac{x_0}{a(p - l)(m - l)} - \frac{x}{a^2(l - m)} \right\}, \]

\[e_2 = \left\{ \frac{x}{a^m(l - m)} + \frac{x_0}{a^m(m - l)(l - m)} \right\} \] and

\[e_3 = \frac{x_0}{a^p(p - l)(p - m)^2}. \]
(iii) \(f_0(t) = \left\{ \frac{e_4}{l-n} - \frac{e_5}{(l-n)^2} + \frac{e_6}{l-n} \left| \frac{t}{a} \right| \right\} t^n + \left(\frac{x}{a^n} - \frac{e_4 e_m}{l-n} + \frac{e_6 a^p}{p-n} \right) t^n + \frac{x_0}{a^p(p-m)(p-n)^2} t^p, \)

where

\[
e_4 = \left\{ \frac{x_2}{a^2} - \frac{x_0}{a^2(p-l)} \right\},
\[
e_5 = \left\{ \frac{x}{a^2} - \frac{x_0}{a^2(p-l)} \right\} \text{ and } d
\]

\[
e_6 = \frac{x_0}{a^p(p-l)^2},
\]

(iv) \(f_0(t) = \left(\frac{e_4}{m-n} \right) t^n + \left(\frac{x}{a^n} - \frac{e_4 a^p}{m-n} + e_4 \ln \left| \frac{t}{a} \right| \right) t^n + \frac{x_0}{a^p(p-m)(p-n)^2} t^p. \)

(v) \(f_0(t) = \)

\[
\left\{ \frac{e_4}{l-n} - \frac{e_5}{l-n} + \frac{e_6}{2} \left(\ln \left| \frac{t}{a} \right| \right)^2 \right\} t^n + \frac{x_0}{a^p(p-l)^2} t^p.
\]

(vi) \(f_0(t) = \frac{e_7}{l-n} + \frac{e_8}{m-n} t^n + \left(\frac{x}{a^2} - \frac{e_7 a^l}{l-n} + \frac{e_8 a^m}{m-n} \right) t^n + \frac{x_0}{a^p(p-l)^2} t^p. \)

where

\[
e_7 = \left\{ \frac{x_2}{a^2} - \frac{x_0}{a^2(l-m)^2} + \frac{x}{a^2(l-m)} \right\},
\]

\[
e_8 = \left\{ \frac{x}{a^2(l-m)^3} - \frac{x_0}{a^2(l-m)^2} \right\} \text{ and } d
\]

\[
e_9 = \frac{x_0}{a^p(a^p(p-m))},
\]

(vii) \(f_0(t) = \frac{e_1}{l-n} + \frac{e_2}{m-n} t^n + \left(\frac{x}{a^2} - \frac{e_1 a^l}{l-n} + \frac{e_2 a^m}{m-n} \right) t^n + \frac{x_0}{a^p(p-l)(p-m)} t^p \ln \left| \frac{t}{a} \right|. \)

(viii) \(f_0(t) = \left(\frac{e_1}{l-n} \right) t^n + \left(\frac{e_11}{m-n} \right) t^n + \left(\frac{e_12}{p-n} \right) t^n + \frac{x_0}{a^p(p-l)(p-m)^2} t^p. \)

(ix) \(f_0(t) = \left(\frac{e_11}{m-n} \right) t^n + \left(\frac{e_12}{p-n} \right) t^n + \left(\frac{e_10}{a^n} \right) t^n + \frac{x_0}{a^p(p-l)^2} \left(\ln \left| \frac{t}{a} \right| \right)^2. \)
\[(x\nu)_{f_0}(t) = \left(\frac{e_a}{m - n}\right) t^m + \left\{ \frac{\xi}{a^n} - e_8 \frac{a^m - n}{m - n} + e_7 \ln \left(\frac{t}{a}\right) \right\} t^n + \frac{x_0}{2a^p(b - m)} \left(\ln \left(\frac{t}{a}\right) \right)^2,\]

and
\[(x\nu)_{f_0}(t) = \left\{ \frac{\xi}{a^n} + \frac{x_0}{a^n} \ln \left(\frac{t}{a}\right) + \frac{x_0}{2a^p(b - m)} \left(\ln \left(\frac{t}{a}\right) \right)^2 + \frac{x_0}{6a^n} \left(\ln \left(\frac{t}{a}\right) \right)^3 \right\} t^q,\]

where \(x, \xi, x_0, x_1, x_2, x_3, x_4\) and \(x_5\) are limit points in \(X\). These are the unique solutions of all possible cases. In fact, all these are the possible solutions of (1.4). Hence the theorem is proved.

Example 3.1. Let \(X = \mathbb{R}\) be a Banach space and \(I = (a, \infty), a > 0\). Consider the Euler's equation
\[(3.5)\]
\[t^\gamma y''(t) + 2t^{\gamma - 1} y'(t) - 4t^{\gamma - 2} y(t) = 0\]

If we compare (3.5) with (1.4), then \(a = 0, \beta = 2, \gamma = -4\) and \(d = 4\), and \(l = 1, m = 1, n = 2, p = 2\) are the characteristic roots of (3.5). Let \(f : I \to X\) satisfy the differential inequality
\[
\left\| t^\epsilon f^{(\nu)}(t) + 2t^\epsilon y''(t) - 4t^\epsilon y'(t) + 4t^\epsilon f(t) \right\| \leq \epsilon
\]
for any \(\epsilon > 0\) and for any \(t \in I\). Then, by Theorem 3.1, there exists a unique solution \(f_0 : I \to X\) such that
\[
\left\| f(t) - f_0(t) \right\| \leq \left\| t^\epsilon \right\| \left(\int_a^b u^{-\epsilon} \vartheta(u) du \right).
\]

where \(I = (a, b)\) and
\[
\varphi(t) = \left\| t^\epsilon \right\| \left(\int_a^b u^{-\epsilon} e^u du \right) = e^2 \left(\frac{t}{b} \right)^2 - 1
\]

When \(b \to \infty\), \(\varphi(t) = \frac{e^2}{2}\). Also
\[
\psi(t) = \left| t^\epsilon \right| \left(\int_a^b u^{-\epsilon} e^u du \right) = e^2 \left(\frac{t}{b} \right)^2 - 1 = \frac{e^2}{2}
\]

and
\[
\vartheta(t) = \left| t^\epsilon \right| \left(\int_a^b u^{-\epsilon} e^u du \right) = e^2 \frac{2}{e^2}
\]

as \(b \to \infty\). Hence,
\[
\left\| f(t) - f_0(t) \right\| \leq \left\| t^\epsilon \right\| \left(\int_a^b u^{-\epsilon} e^u du \right) = \frac{e^2}{4} \left(\frac{t}{b} \right)^2 - 1
\]

When \(b \to \infty\),
\[
\left\| f(t) - f_0(t) \right\| \leq \frac{e^2}{4},
\]

where
\[
f_0(t) = \left[\left(\frac{2x_0 - x - x_2}{a} \right) + \left(\frac{x_0 - x_2}{a} \ln \left(\frac{t}{a}\right) \right) t \right] + \left[\left(\frac{x + x_2 - 2x_0}{a^2} \right) + \left(\frac{x_0}{a^2} \ln \left(\frac{t}{a}\right) \right) t^2,\right.
\]

and \(x, \xi, x_0, x_1, x_2, x_3, x_4\) and \(x_5\) are the unique elements of \(X\).

Acknowledgment

The authors are thankful to the referee for suggesting the publication of this article.

References

DEPARTMENT OF MATHEMATICS
SAMBHALPUR UNIVERSITY
SAMBHALPUR-768019, INDIA
E-mail address: arun_tripathy70@rediffmail.com

DEPARTMENT OF MATHEMATICS
SAMBHALPUR UNIVERSITY
SAMBHALPUR-768019, INDIA
E-mail address: abhiseksatapathy@yahoo.co.in